Про психологию. Учения и методики

Гуманитарии и математики: почему мы мыслим по-разному. Математика как инструмент познания мира и самих себя Математический метод примеры из жизни

В обществе существует точка зрения, согласно которой все люди в вопросах интеллектуального познания имеют склонность или к математическому полюсу, или к гуманитарному. Ребёнок идёт в школу, получает пятёрки по литературе, а математика ему никак не даётся. «Ничего, - говорят родители, - он у нас гуманитарий». Часто встречается и обратная ситуация.

Но насколько это справедливо? Является ли математика объективно более сложной в освоении, чем гуманитарные дисциплины? Заложены ли способности человека генетически или являются результатом воспитания?

В ходе исследования Математики оказались умнее гуманитариев выяснилось: если ученик хорошо сдаёт экзамены по точным дисциплинам, в большинстве случаев он так же успешно справляется и с гуманитарными. А учащиеся в гуманитарных школах проваливают не только математику, но и языки.

Значит ли это, что математические дисциплины более сложные? Нет.

Если человек хорошо сдаёт все экзамены, это говорит о его ответственности, а не о способностях. Многие люди легко могут оперировать абстрактными понятиями и изучать языки, но им очень трудно даётся математика. К тому же другие исследования показывают, что между освоением математических и гуманитарных дисциплин нет связи на уровне мозговой деятельности. Это совершенно разные когнитивные способности.

Физиологическая основа интеллектуальных способностей

В рамках исследования Origins of the brain networks for advanced mathematics in expert mathematicians учёные фиксировали мозговую активность математиков и других людей во время выполнения различных заданий. В результате они пришли к следующему выводу.

При выполнении математических операций у человека активизируются особые зоны мозга, которые не связаны с языковыми способностями.

Выходит, разница между математическим и гуманитарным познанием лежит на физиологическом уровне. Есть зоны, ответственные за математическое мышление, есть - за языковое. Нельзя сказать, что какое-то из них более совершенно.

Природа и воспитание

В упоминаемом выше исследовании учёные также пришли к выводу, что способность детей выполнять простейшие алгебраические операции - залог дальнейших математических успехов. Ведь в раннем возрасте, ещё до всякого воспитания, у человека участки мозга развиваются по-разному. У кого-то математические зоны развиты лучше, а у кого-то - хуже.

Поскольку как в элементарных, так и в более сложных задачах задействуется одна нейронная сеть, можно предсказать будущий талант ребёнка ещё до того, как он проявится. Малыш довольно быстро понял, почему 1 + 1 = 2? Тогда в будущем ему относительно просто дадутся синусы и косинусы.

То же самое можно сказать и о гуманитариях. Скорость освоения ребёнком языка, умение улавливать основные законы грамматики позволяют оценить, насколько хорош он будет в постижении гуманитарных наук, так как ранние успехи в этой сфере свидетельствуют о потенциале соответствующей области мозга.

Можно предположить, что физиологические особенности предопределяют наши когнитивные способности. Однако это не так и вот почему:

  • Не учитывается множество других факторов, влияющих на проявление таланта. Например, у человека могут быть задатки математика на физиологическом уровне, но при этом абсолютно отсутствует интерес к этой дисциплине, из-за чего его природный талант не получит развития.
  • То, о чём мы говорим как о физиологической склонности, на самом деле может быть результатом ранней воспитательной деятельности родителей.

Как отмечает швейцарский психолог и философ Жан Пиаже Cognition , развитие и языковых, и математических когнитивных способностей происходит в предоперациональный период (2–7 лет). Именно тогда может проявиться физиологическая предрасположенность ребёнка к определённой деятельности.

Этот период в развитии мозга самый важный, поскольку создание нейронных связей идёт по принципу частоты их использования О особенностях развития мозга от зачатия до подросткового возраста . То есть после 2–3 лет начинают активно развиваться те его зоны, которые чаще всего задействуются.

На этом этапе развитие мозга напрямую зависит от деятельности человека и повторения им каких-либо практик.

Также проливает свет на формирование способностей человека изучение близнецов. Набор генов у них примерно одинаков, а потому различия в интеллектуальных способностях, скорее всего, будут обусловлены внешними факторами.

Такие исследования, проведённые российскими учёными в 90-х годах Откуда берутся умные дети , показали, что с двух лет интеллект у близнецов действительно становится схожим в относительно одинаковых внешних условиях.

Примерно к тому же выводу пришли учёные из Калифорнийского университета в Санта-Барбаре The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence . Внешняя среда имеет значение и играет роль условия реализации биологического базиса.

Выводы

Станет ли человек гуманитарием или математиком, зависит от биологического фактора и наследственности, предопределяющих развитие его мозга. Однако на проявление этого фактора сильно влияет деятельность в детском возрасте. Речь идёт о том периоде, когда человек непосредственно ещё не начал изучение самих дисциплин, но в процессе игры и общения с родителями каким-то образом задействует разные зоны мозга, стимулируя их развитие.

Практически это означает следующее: родители не должны навязывать ребёнку деятельность, к которой у него нет особого влечения и в которой он не очень успешен. Нужно постараться отыскать талант и способствовать его развитию.

Ачмизова Самира

Если внимательно посмотреть по сторонам, роль математики в жизни человека становится очевидной. Компьютеры, современные телефоны и прочая техника сопровождают нас каждый день, а их создание невозможно без использования законов и расчетов великой науки. Однако роль математики в жизни людей и общества не исчерпывается подобным ее применением. Иначе, например, многие деятели искусства могли бы с чистой совестью сказать, что время, посвященное в школе решению задач и доказательству теорем, было потрачено впустую. Тем не менее, это не так. Попробуем разобраться, для чего нужна математика. роль математики в жизни человека

Скачать:

Предварительный просмотр:

Проект

на тему: «Роль математики в жизни человека.

Для чего нужна математика?»

Подготовила:

Ученица 6-го класса

МБОУ СОШ № 13

Ачмизова С.А.

2018

Роль математики в жизни человека.

Для чего нужна математика?

Если внимательно посмотреть по сторонам, роль математики в жизни человека становится очевидной. Компьютеры, современные телефоны и прочая техника сопровождают нас каждый день, а их создание невозможно без использования законов и расчетов великой науки. Однако роль математики в жизни людей и общества не исчерпывается подобным ее применением. Иначе, например, многие деятели искусства могли бы с чистой совестью сказать, что время, посвященное в школе решению задач и доказательству теорем, было потрачено впустую. Тем не менее, это не так. Попробуем разобраться, для чего нужна математика. роль математики в жизни человека

Основание

Для начала стоит понять, что вообще представляет собой математика. В переводе с древнегреческого само ее название означает «наука», «изучение». В основе математики лежат операции подсчета, измерения и описания форм объектов. Это базис, на который опираются знания о структуре, порядке и отношениях. Именно они составляют суть науки. Свойства реальных объектов в ней идеализируются и записываются на формальном языке. Так происходит их преобразование в математические объекты. Часть идеализированных свойств становятся аксиомами (утверждениями, не требующими доказательств). Из них затем выводятся другие истинные свойства. Так формируется математическая модель реально существующего объекта.

Два раздела

Математику можно разделить на две взаимодополняющие части. Теоретическая наука занимается глубоким анализом внутриматематических структур. Прикладная же предоставляет свои модели другим дисциплинам. Физика, химия и астрономия, инженерные системы, прогнозирование и логика используют математический аппарат постоянно. С его помощью делаются открытия, обнаруживаются закономерности, предугадываются события. В этом смысле значение математики в жизни человека невозможно переоценить.

Основа профессиональной деятельности

Без знания основных математических законов и умения ими пользоваться в современном мире становится очень трудно обучаться практически любым профессиям. С цифрами и операциями с ними имеют дело не только финансисты и бухгалтера. Астроном не сможет определить без таких знаний расстояние до звезды и наилучшее время наблюдения за ней, а молекулярный биолог - понять, как бороться с генной мутацией. Инженер не сконструирует рабочую систему сигнализации или видеонаблюдения, а программист не найдет подход к операционной системе. Многие из этих и других профессий без математики просто не существуют. значение математики в жизни человека

Гуманитарные знания

Однако не столь очевидна роль математики в жизни человека, например, посвятившего себя живописи или литературе. И все же следы царицы наук присутствуют и в гуманитарных знаниях. Казалось бы, поэзия - сплошная романтика и вдохновение, в ней нет места анализу и расчету. Однако достаточно вспомнить стихотворные размеры (ямб, хорей, амфибрахий), как приходит понимание, что математика и тут приложила свою руку. Ритм, словесный или музыкальный, также описывается и просчитывается с применением знаний этой науки. математика в нашей жизни Для писателя или психолога часто важны такие понятия, как достоверность информации, единичный случай, обобщение и так далее.

Все они либо напрямую являются математическими, либо строятся на основе закономерностей, разработанных царицей наук, существуют благодаря ей и по ее правилам. Психология родилась на стыке гуманитарных и естественных наук. Все ее направления, даже те, что работают исключительно с образами, опираются на наблюдение, анализ данных, их обобщение и верификацию. Здесь используется и моделирование, и прогнозирование, и статистические методы.

Со школы

Математика в нашей жизни присутствует не только в процессе освоения профессии и реализации полученных знаний. Так или иначе мы используем царицу наук практически в каждый момент времени. Именно поэтому математике начинают обучать достаточно рано. Решая простые и сложные задачи, ребенок не просто учится складывать, вычитать и умножать. Он медленно, с азов постигает устройство современного мира. И речь тут идет не о техническом прогрессе или умении проверять сдачу в магазине. Математика формирует некоторые особенности мышления и оказывает влияние на отношение к миру. для чего нужна математика

Самое простое, самое сложное, самое главное

Наверное, все вспомнят хотя бы один вечер за домашним заданием, когда хотелось отчаянно взвыть: «Я не понимаю, для чего нужна математика!», отбросить в сторону ненавистные сложные и нудные задачки и сбежать во двор к друзьям. В школе и даже позже, в институте, заверения родителей и преподавателей «потом пригодится» кажутся надоедливым бредом. Однако они, оказывается, правы. математика в жизни общества Именно математика, а затем и физика, учит находить причинно-следственные связи, закладывает привычку искать пресловутое «откуда ноги растут».

Внимание, сосредоточенность, сила воли - они также тренируются в процессе решения тех самых ненавистных задачек. Если пойти дальше, то умение выводить следствия из фактов, прогнозировать будущие события, а также привычка это делать тоже закладываются во время изучения математических теорий. Моделирование, абстрагирование, дедукция и индукция - все это методы царицы наук и одновременно способы работы мозга с информацией.

И снова психология

Часто именно математика дарит ребенку откровение, что взрослые не всемогущи и знают далеко не все. Так бывает, когда мама или папа на просьбу помочь решить задачку лишь разводят руками и объявляют о своей неспособности это сделать. И ребенок вынужден сам искать ответ, ошибаться и снова искать. Бывает и так, что родители просто отказываются помочь. «Ты должен сам», - говорят они. И правильно делают. После многочасовых попыток ребенок получит не просто сделанное домашнее задание, но способность самостоятельно находить решения, обнаруживать и исправлять ошибки. И в этом также кроется роль математики в жизни человека. математика в повседневной жизни Конечно, самостоятельность, умение принимать решения, отвечать за них, отсутствие страха перед ошибками вырабатываются не только на уроках алгебры и геометрии. Но эти дисциплины играют в процессе немалую роль. Математика воспитывает такие качества, как целеустремленность и активность. Правда, многое зависит и от учителя. Неправильная подача материала, излишняя строгость и давление могут, наоборот, привить страх перед трудностями и ошибками (сначала на уроках, а потом и в жизни), нежелание высказывать свое мнение, пассивность.

Математика в повседневной жизни

Взрослые люди после окончания университета или колледжа не перестают каждый день решать математические задачи. Как успеть на поезд? Получится ли из килограмма мяса приготовить ужин для десяти гостей? Сколько калорий в блюде? На какое время хватит одной лампочки? Эти и многие другие вопросы имеют прямое отношение к царице наук и без нее не решаются. Получается, математика в нашей жизни незримо присутствует практически постоянно. Причем чаще всего мы этого даже не замечаем. роль математики в жизни людей и общества Математика в жизни общества и отдельного человека затрагивает огромное количество областей.

Некоторые профессии без нее немыслимы, многие появились только благодаря развитию отдельных ее направлений. Современный технический прогресс тесно связан с усложнением и развитием математического аппарата. Компьютеры и телефоны, самолеты и космические аппараты никогда бы не появились, не будь людям известна царица наук. Однако роль математики в жизни человека этим не исчерпывается. Наука помогает ребенку осваивать мир, обучает более эффективному взаимодействию с ним, формирует мышление и отдельные качества характера. Впрочем, сама по себе математика не справилась бы с такими задачами. Как было сказано выше, огромную роль играет подача материала и особенности личности того, кто знакомит ребенка с миром.

Математика в жизни человека

Вам приходилось слышать такое выражение: математика - страна без границ? Эта фраза о математике имеет под собой очень веские основания. Математика в жизни человека занимает особое место. Мы настолько сроднились с ней, что попросту не замечаем ее.

А ведь с математики начинается наша жизнь. Ребенок только родился, а первые цифры в его жизни уже звучат: рост, вес. Малыш растет, не может выговорить слово "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков. Да и родители о задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику. Ведь нужно решать элементарную задачу: сколько еды нужно приготовить для малыша, учитывая его вес.

В школе математических задач много и сложность их с каждым годом растет. Они не просто учат ребенка определенным действиям. Математические задачи развивают мышление, логику, комплекс умений: умение группировать предметы, раскрывать закономерности, определять связи между явлениями, принимать решения. Занятия математикой, решение математических задач развивает личность, делает ее целеустремленнее, активнее, самостоятельнее.

И после школы математика очень даже пригодится. Во время учебы в вузе, на работе и дома нужно постоянно решать задачи связанные с математикой. Какова вероятность успешной сдачи экзамена? Сколько денег нужно заработать, чтобы купить квартиру? Чему равна площадь поверхности стен вашего дома, и сколько нужно приобрести кирпича для утепления дома? Как правильно рассчитать, чтобы родилась девочка или мальчик? И тут на помощь придет математика. Она следует за человеком везде, помогает ему решать практические задачи, делает его жизнь намного удобнее.

Стремительно изменяется мир и сама жизнь. В неё входят новые технологии. Только математика и решение задач в традиционном понимании не изменяют себе. Математические законы проверены и систематизированы, поэтому человек в важные моменты может положиться на нее, решить любую задачу. Математика не подведет.

В чём же состоит цель математического образования?

  • Подготовка в вуз.
  • Подготовка к будущей профессии.
  • Интеллектуальное развитие.
  • Формирование мировоззрения.
  • Ориентация в окружающем мире.
  • Физкультура мозга.

Вот некоторые мотивировки относительно важности математического образования для личности.

Математика встречается и используется в повседневной жизни , следовательно, определенные математические навыки нужны каждому человеку. Нам приходится в жизни считать, например, деньги. Мы постоянно используем, часто не замечая этого, знания о величинах, характеризующих протяженности, площади, объемы, промежутки времени, скорости и многое другое. Все это пришло к нам на уроках арифметики и геометрии и сгодилось для ориентации в окружающем мире.

Математические знания и навыки необходимы практически во всех профессиях, прежде всего, конечно, в тех, что связаны с естественными науками, техникой и экономикой. Но несомненна необходимость применения математических знаний и математического мышления врачу, лингвисту, историку, и трудно оборвать этот список, настолько важно математическое образование для профессиональной деятельности в наше время. Следовательно, математика и математическое образование нужны для подготовки к будущей профессии . Для этого необходимы знания из алгебры, математического анализа, теории вероятности и статистики.

Философское постижение мира, его общих закономерностей и основных научных концепций также не возможно без математики. И потому математика необходима для формирования мировоззрения .

Математика должна способствовать освоению этических принципов человеческого общежития. Изучение ее призвано воспитывать в человеке интеллектуальную честность, объективность, стремление к постижению истины, она воспитывает также способность к эстетическому восприятию мира, красоты интеллектуальных достижений .

«Математику уже затем учить надо, что она ум в порядок приводит», - М.В. Ломоносов. Не только руки, ноги, тело требуют тренировки, но и мозг человека требует упражнений . Решение задач, головоломок, математических ребусов развивает логическое мышление, скорость реакции. Недаром говорят, что математика – это гимнастика ума.

Зачем нужна математика

Как любой нормальный ребенок, ещё в школьные годы, меня волновал вопрос: Зачем же нужна математика? Тогда, я быстро нашла на него ответ, научившись правильно подсчитывать сдачу, считать, сколько мне осталось накопить до нужных бус и браслетов, под каким углом кидать камень по воде, чтобы получилась «лягушка».

Сейчас, будучи студентом университета, я попытаюсь ещё раз задать себе вопрос о значение математики в нашей жизни и разобраться в нём глубже.

Честно говоря, я думала, что математика не играет уж такую великую роль в жизни людей, но когда начала писать реферат и задумываться на эту тему, оказалось, что я была не права. О таком большом значении и важности математики в жизни людей я и не догадывалась.

Тяжело представить, но когда-то люди совсем не умели считать!

Факты убедительно свидетельствуют о том, что счет возник раньше, чем названия чисел. Человек пользовался окружавшими его однотипными предметами: пальцы, камешки, узелки, нарисованные на стене черточки, зарубки на палках и на деревьях, кучки камней и т.п. При возникновении языка слова связываются только с теми понятиями, которые уже существуют, т. е. распознаются. Слова "один", "два" и, возможно, "три" появляются независимо от счета. Счисление (нумерация) - совокупность приёмов наименования и обозначения чисел. Когда счет становится распространенным и привычным делом, для наиболее часто встречающихся (т. е. небольших) групп стандартных предметов возникают и словесные обозначения.

С усложнением хозяйственной деятельности людей понадобилось вести счет в более обширных пределах, что потребовало создания более сложных счётных устройств. Это различные счёты (абак, соробан, суан-пан и т.п.) и позднее в средние века появляются механические счётные.

Во многом благодаря математике цивилизация стала такой, какая она есть сейчас: развитой, высокотехнологичной, образованной и обеспеченной. Математическая наука позволила развиться цивилизации во всех ее аспектах.

Значение понятия математика

Название "математика" происходит от греческого слова "матейн" (mathein) - учиться, познавать. Древние греки вообще считали, что понятия "математика" (mathematike) и "наука", "познание" (mathema) - синонимы. Им было свойственно такое понимание универсализма этой отрасли знания, которое два тысячелетия спустя выразил Рене Декарт, писавший: "К области математики относят науки, в которых рассматриваются либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звезды, звуки или что-нибудь другое...; таким образом, должна существовать некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов..."

Другое объяснение происхождения слова "математика" связано с греческим словом "матема" (mathema), что означает урожай, сбор урожая. Разметка земельных участков (геометрия), определение сроков полевых работ (на основе астрономических наблюдений и вычислений), подготовка необходимого количества посевных материалов и подсчет собранного урожая требовали серьезных математических знаний.

Роль математики в науке

Роль математики в современной науке постоянно возрастает. Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности.

Благодаря математическим знаниям и навыкам мы решаем не только арифметические задачи. Это наука позволяет развивать гибкость ума, что нужно для принятия объективного решения любой задачи. Эта не только задачи математического характера, но и различные жизненные ситуации, требующие рассмотрения «под разными углами». Чтобы понять, познать сущность проблемы, нужно рассмотреть ее со всех сторон, что возможно благодаря воображению. математика наука язык

Математика - наука точная, которая не терпит ошибок. Именно благодаря этой ее черте математические законы легли в основу всех изобретений, начиная примитивными в виде рычагов и маятников и заканчивая суперкомпьютерами.

Математический язык

Выводимые в математике законы и закономерности являются объективными и применимыми во всех остальных областях человеческого знания. На ее законы опирается физика, химия, география, геология и многие другие области научного знания, в которых просто невозможно обойтись без математики Сейчас мы привыкли, что все мгновенно устаревает, для компьютера год - уже приговор. А Вы представьте, что все то, что была заложена еще две тысячи лет назад по математике до сих пор актуально, что все те математические законы и теоремы, которые были сформулированы знаменитыми математиками тех времен, до сих пор верны. Почти ни что не изменилось с того времени.

Математика - страна без границ

Не раз приходилось слышать фразу о том, что математика - страна без границ. Несмотря на свою банальность, фраза о математике имеет под собой очень веские основания. Математика в жизни человека занимает особое место. Мы настолько срослись с ней, что попросту не замечаем её.

А ведь с математики начинается всё. Ребёнок только родился, а первые цифры в его жизни уже звучат: рост, вес.

Малыш растет, не может выговорить слова "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков. Да и родители о математике и задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику. Ведь нужно решить элементарные задачи: сколько еды нужно приготовить для малыша, учитывая его вес.

Строители делают планировку квартир, оптимальную планировку квартир, длину и ширину коридора, размеры комнат помогают найти из простых функции. У Вас есть площадь, основные параметры дома (длина и ширина), примерный размер коридора, на основании этого составляется система элементарных функций, в которых неизвестными остаются только параметры комнат, того, что Вас интересует. Затем данная система сводиться в одно уравнение, дифференцируется, исследуется на монотонность, и находятся ее точки экстремума. Именно точки экстремума и являются оптимальными, тема, которые выгоднее всего использовать. Значения неизвестных, полученные в точках экстремума, и используются строителями.

В школе математических задач Математика в древности

Древние Египтяне никогда бы не построили свои Великие пирамиды без простых законов математики. Кажется, что может быть проще, чем провести прямую линию?! А ведь чтобы сделать сторону пирамиды, необходима прямая линия длиною в несколько километров! Египтянам удалось додуматься, как решить задачу Многие правила из школьных учебников арифметики и геометрии были известны древним грекам две с лишним тысячи лет назад. Другие древние народы - египтяне, вавилоняне, китайцы, народы Индии - в третьем тысячелетии до нашего летосчисления имели сведения по геометрии и арифметике, которых не хватает некоторым ученикам пятого или шестого класса. Ведь всюду, где надо что-то считать, измерять, сравнивать, без математики не обойтись. А чем дальше, тем больше и точнее нужно было считать. С каждым десятилетием математика становилась всё нужнее людям. Теперь расчётами и вычислениями приходиться заниматься не только самим математикам: и инженеры, и моряки, и строители на каждом шагу сталкивались с вычислениями.

Кому ещё помогает математика

Также математика помогает астрономам, в определении путей далеких звезд. Инженерам в расчете реактивных самолетов, кораблей. Физику открывает законы атомного ядра. Моряку указывает путь корабля в океане.

В наше время появляется всё больше и больше вычислительных машин, сложных станков, различных автоматов, поэтому математика нужна не только инженерам и физикам, но и обычным мастерам и рабочим на заводе.

Однако ещё несколько десятков лет назад встречалось немало таких задач, решить которые было практически невозможно, хотя математики и знали, как их нужно решать. Бывало, что для решения одной единственной задачи десятки людей работали несколько лет. Вычисления шли медленно. Главные «инструменты» математика были те же, что во времена древних греков - собственная голова и чистый лист бумаги с карандашом.

И вот у математики появился новый могучий помощник, который называется электронно-вычислительной машиной.

С изобретением электронно-вычислительных машин началась новая эпоха в математике и многих других науках.

Нам нужно сложить тысячу больших чисел. Если складывать числа на бумаге столбиком, то это, вероятно, займет часа четыре. Опытный бухгалтер на счётах сложит тысячу чисел примерно за час. А электронно-вычислительной машине понадобится для этой работы... доля секунды. К тому же для проверки она проделает вычисление несколько раз. Существующие быстродействующие компьютеры работают в сотни тысяч раз быстрее человека.

Для предсказания завтрашней погоды требовалось проделать тысячи арифметических действий. При ручном счёте два специалиста потратили бы на эти вычисления пять лет, а машина выполнила работу за час.

Например, во многих больших аэропортах компьютер вместо человека-диспетчера управляет взлётом и посадкой самолётов. Машина оказывается гораздо лучшим диспетчером, чем человек: она быстрее «думает», никогда не волнуется, не устаёт и почти никогда не ошибается. Выходит, что «с помощью» электронно-вычислительной машины математика может управлять самолётами!

Вычислительные машины управляют поездами, метро, искусственными спутниками Земли, заводами и даже переводят книги с одного языка на другой. Каждая такая машина работает по законам математики.

Известные высказывания о математике

*Недаром гениальный учёный Карл Фридрих Гаусс говорил, что математика - царица наук!

*«Математику только зачем учить надо, что она ум в порядок приводит» - это слова нашего знаменитого и гениального М. Ломоносов.

*"Математика - гимнастика ума" - говорил великий полководец Суворов.

*"Наука только тогда достигает совершенства, когда она начинает пользоваться математикой" - утверждал всемирно известный политик и философ Маркс.

*Великая книга природы написана математическими символами - говорил Г. Галилей.

*«Человек, не знающий математики, не способен ни к каким другим наукам» - говорил Р. Бэкон

Никогда ещё математика не была настолько всеобъемлющей и такой нужной людям наукой, как сегодня. О том, какой будет математика завтра, говорить трудно. Она развивается сейчас так стремительно, так часто делаются в ней новые открытия, что гадать о том, что будет, пожалуй, бесполезно. Одно можно сказать наверняка: завтра математика станет ещё могущественнее, ещё важнее и нужнее людям, чем сегодня.

Пачева Алина

Руководитель проекта:

Филькова Лариса Николаевна

Учреждение:

МКОУ "СОШ №27" г.о. Нальчик

В данной исследовательской работе по математике на тему "Математика в обычной жизни" автор изучает отрасли деятельности человека и профессии, где встречается математика, доказывает ее необходимость, а также узнает, нужна ли математика человеку в обычной, повседневной жизни?

В представленном исследовательском проекте по математике на тему "Математика в обычной повседневной жизни" проводится изучение высказываний великих людей о математике, доказывается необходимость математики не только в определенных профессиях, но и в повседневной (обычной) жизни.


В исследовательской работе по математике "Математика в обычной повседневной жизни" учащаяся планирует познакомить школьников с результатами своего исследования с целью развития интереса к этому предмету, расширения знаний по математике и кругозора.

Введение
1. Математика в повседневной жизни.
2. Математика в профессиях.
3. Зачем нужна математика в разных отраслях жизни?
3.1. Зачем нужна математика?
3.2. Зачем нужна математика ребенку?
3.3. Зачем нужна математика гуманитариям?
4. Высказывания великих людей о математике.
Заключение

Введение

Однажды у меня возник вопрос «А для чего нужна математика? , Для чего мы учим различные уравнения и теоремы? Мы же пользуемся математикой только в магазине при покупке продуктов. Почему математику мы изучаем с детского сада? » А я попыталась узнать всю важность этого предмета.

Считаю, что моя тема исследовательской работы по математике "Математика в обычной жизни" является актуальной .

Цель исследовательской работы: изучить, где математика встречается в жизни и доказать ее необходимость. Узнать, нужна ли математика человеку в обычной жизни?

Задачи:

  1. Изучить виды деятельности (профессии), где человеку не обойтись без математики;
  2. Ответить на вопросы: зачем нужна математика в обычной жизни? и что может дать математика каждой отдельной личности? ;
  3. Изучить высказывания великих людей о математике.

Гипотеза: математика в нашей жизни необходима не только в определенных профессиях, но и в повседневной (обычной) жизни.

Математика в повседневной жизни и работе


Математика - совокупность наук изучающих величины, количественные отношения, а также пространственные формы.

Многие известные математики говорят, что главное в математике - научить человека мыслить, ставя порою перед ним очень сложные задания. «Математика развивает логическое мышление, умение самостоятельно решать проблемы, способность быстро уловить суть и найти к жизненной задаче наиболее подходящий и простой подход »- говорят нам взрослые. Математика тесно связана с нашей повседневной жизнью.

Математика встречается в нашей жизни практически на каждом шагу и не такая уж она серая и скучная, а разноцветная и веселая...

Благодаря математике мы решаем множество вопросов в обычной жизни. Мало кто задумывался, что математика окружает нас с первых дней жизни . Любой ребенок даже, который не изучал арифметику сталкивался с цифрами. Он узнает в поликлинике свой вес, рост, так же ему известен его возраст. А еще он не один раз за день столкнется с различными задачами по подсчету игрушек в комнате или конфет, чтобы угостить своих друзей.

Математика и режим дня . Например, наш распорядок дня - режим, не что иное как определение времени и его планирование в течение дня при помощи несложных математических вычислений.

Уроки в школе – это тоже распределение времени между изучением разных предметов и отдыхом на переменах. После школы нам нужно успеть пообедать, сходить на дополнительные занятия, сделать уроки, поужинать, отдохнуть и лечь спать, чтобы хорошенько выспаться и с новыми силами и в хорошем настроении начать новый день. И вот так мы весь день следим за временем по часам и учимся правильно его распределять, чтобы не опаздывать и не прибегать раньше, чем нужно.

В школе мы изучаем математику с первого класса и до окончания школы, потом математике нас учат в университете. С каждым годом курс расширяется становиться более углубленным, все больше предметов связанно с математикой.

В средней школе у нас появляется алгебра и геометрия в замен арифметике. Наш кругозор расширяется. Мы можем понимать, видеть то, что раньше нам казалось не ясным. Математические науки развивают наше мышление, учат нас соображать.

С возрастом мы решаем все больше и больше задач: Какое количество продуктов нужно купить, чтобы хватило на неделю? Сколько нужно зарабатывать, чтобы накопить на дачу и поездки за границу? Сколько краски нужно купить, чтобы покрасить стены в спальне?

Без знания математики вся современная жизнь была бы невозможна. У нас не было бы хороших домов, потому что строители должны уметь измерять, считать и сооружать. Наша одежда была бы очень грубой, так как ее нужно хорошо скроить, а для этого точно все измерить. Не было бы ни железных дорог, ни кораблей, ни самолетов, никакой большой промышленности.

Не было бы радио, телевидения, кино, телефона и тысячи других вещей, составляющих часть нашей цивилизации. Использование математики, измерение «насколько? », «как долго? » являются жизненно необходимой частью мира, в котором мы живем.

Благодаря математике появились вычислительные счетные машины. Вычислительная техника прошла путь от простых счётов, арифмометров, логарифмических линеек до микрокалькуляторов и компьютеров. Сейчас вычислительные машины используются во всех отраслях народного хозяйства: в статистике, торговле, автоматизированном управлении заводами и фабриками. Машины не только считают, они могут делать переводы с одного языка на другой, могут сочинять музыку, играть в шахматы.

Ремонт дома . Если мы соберемся делать дома ремонт, то тут нам точно не обойтись без математики. Нам потребуется сделать много расчетов. От точности которых будет зависеть ровные ли у нас будут стены и потолки, а также хватит ли нам обоев, чтобы оклеить комнату и плитки, чтобы положить на пол в ванной комнате.

Таким образом , я могу сказать, что математика требуется нам повсюду, и нет такой области жизни, где бы мы могли без нее обойтись.

Математика в профессиях


В мире не существует ни одной профессии, где не встречается математика. И мнение учеников, что математика нам не пригодится неверна. В любой профессии человек нуждается в математике. Даже человеку, чья работа не связана с математикой, она необходима.

Ведь нужно знать математику, чтобы тебя не обсчитали, выдавая тебе зарплату или пенсию. Также математика учит решить любую задачу несколькими решениями. Благодаря этому человек развивает свое неординарное мышление.

Можно привести очень много наглядных примеров профессий, где необходима математика:

  • Бухгалтер
  • Инженер
  • Продавец, программист и многие другие….

Бухгалтер.
В профессии бухгалтера математика просто необходима. Бухгалтер начисляет зарплату, пособия, отпускные, исчисляет налоги, страховые взносы и т.п.

Продавец.
В профессии продавца математика нужна для того, чтобы считать деньги, поступившие продукты и товары, количество оставшихся продуктов и товаров и т.д.

Несмотря на то, что ваша будущая профессия не предполагает связь с математическими формулами и расчетами, никто не знает, чем вы будете заниматься в будущем. Например, заходите стать предпринимателем и открыть свое собственное дело.

Такая смена работы потребует от вас овладение новыми навыками по организации и ведению бизнеса, включая бухгалтерию, а без математических методов прогнозирования, моделирования, анализа и расчетов никак не достичь успеха.

Зачем нужна математика в разных отраслях жизни?

Зачем нужна математика?

Что она дает человеку, какие способности и умения развивает?

Прежде всего, эта фундаментальная наука развивает наши умственные способности – анализ, дедукцию, умение прогнозировать. Математические знания улучшают абстрактное мышление, усиливают его быстроту, учат абстрагироваться, концентрироваться и тренирует память.

Если конкретизировать, что дает нам математика, то результат знакомства с ней можно представить следующим списком навыков:

  • общение;
  • анализ сложных ситуаций, принятие оптимальных решений, независимо от сложности ситуации;
  • поиск и нахождение закономерности;
  • развитие логики, рассуждение, обобщение, грамотная формулировка мысли и логические выводы;
  • быстрота принятия решений;
  • планирование и удерживание в голове сложной пошаговой последовательности;
  • логичное построение сложных операций и хранение их в памяти.

Перечисленные навыки приобретаются не только в результате решения задач различных разделов математики (алгебры, геометрии, тригонометрии, теории вероятности, статистки и т.п.), но и в процессе использования таких математических и логических методов, как головоломки, точные науки или интеллектуальные игры, которые нагружают ваши мозги и «заставляют» искать нестандартные решения и анализировать.

Зачем нужна математика ребенку?

Математика необходима для развития детей. Кроме того, что она развивает ум ребенка, она закладывает основу рационального мышления и интеллектуального развития еще на этапе школьного обучения.

Математика, формируя логику, тренирует наш ум, что позволяет сопоставлять различные понятия, здраво анализировать их и осмысливать. Человек с «кашей в голове» более подвержен заблуждениям, как в мыслях, так и в рассуждениях. Другими словами, знание математики не позволит обмануть вас, как обманулись миллионы людей, доверивших свои вклады финансовым пирамидам.

Математика – это не просто формулы и расчеты, это логика и порядок, которые вытекают их правил и функций! Математические знания позволяют человеку правильно рассуждать, формировать свои мысли, удерживать в голове сложные последовательности и выстраивать между ними взаимосвязи.

Зачем нужна математика гуманитариям?

Многие гуманитарии считают, что им математика не нужна, забывая о том, что математическое мышление поможет в любой профессии, не связанной с точными науками. Далеко ходить не нужно, вспомните адвокатов: свою защиту в суде они выстраивают, словно шахматисты, придумывая хитрые и неординарные решения, используя законодательную базу и логический порядок действий.

Специально изучать углубленный курс математики - смысла нет. Для получения необходимых базовых знаний достаточно школьного и начального вузовского образования, на котором общеобразовательные предметы являются обязательными для всех, как для технарей, так и для гуманитариев. Изучение разнонаправленных предметов гармонично дополняет знания человека, которые пригодятся не только в будущей профессии, но и в повседневной жизни.

Высказывания великих людей о математике

  • Математика - это язык, на котором написана книга природы. (Г. Галилей)
  • Математика – царица наук, арифметика – царица математики. (К.Ф. Гаусс)
  • Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели. (А. Маркушевич)
  • «Числа управляют миром», – говорили пифагорейцы. Но числа дают возможность человеку управлять миром, и в этом нас убеждает весь ход развития науки и техники наших дней. (А. Дородницын)
  • Рано или поздно всякая правильная математическая идея находит применение в том или ином деле. (А.Н. Крылов)
  • Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе. (М.И. Калинин)
  • Разве ты не заметил, что способный к математике изощрен во всех науках в природе? (Платон)
  • Было бы хорошо, если бы эти знания требовало само государство и если бы лиц, занимающих высшие государственные должности, приучали заниматься математикой и в нужных случаях к ней обращаться. (Платон)
  • Науки математические с самой глубокой древности обращали на себя особенное внимание, в настоящее время они получили еще больше интереса по влиянию своему на искусство и промышленность. (П.Л. Чебышев)
  • Математика есть лучшее и даже единственное введение в изучение природы. (Д.И. Писарев)
  • Астрономия (как наука) стала существовать с тех пор, как она соединилась с математикой. (А.И. Герцен)
  • Полет – это математика. (В. Чкалов)
  • Вдохновение нужно в геометрии не меньше, чем в поэзии. (А.С. Пушкин)
  • Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение. (В. Произволов)
  • В математике есть своя красота, как в живописи и поэзии. (Н.Е. Жуковский)
  • Химия – правая рука физики, математика – ее глаз. (М.В. Ломоносов)
  • Математику уже затем учить надо, что она ум в порядок приводит. (М.В. Ломоносов)
  • Я люблю математику не только потому, что она находит применение в технике, но и потому, что она красива. (Р. Петер)
  • Все, что до этого было в науках: гидравлика, аэрометрия, оптика и других темно, сомнительно и недостоверно, математика сделала ясным, верным и очевидным. (М.В. Ломоносов)
  • Стремящийся к ближайшему изучению химии должен быть сведущ и в математике. (М.В. Ломоносов)
  • Слеп физик без математики. (М.В. Ломоносов)
  • Математик, который не является в известной мере поэтом, никогда не будет настоящим математиком. (К. Вейерштрасс)
  • Математика - это язык, на котором говорят все точные науки. (Н.И. Лобачевский)
  • Только с алгеброй начинается строгое математическое учение. (Н.И. Лобачевский)
  • Как бы машина хорошо ни работала, она может решать все требуемые от нее задачи, но она никогда не придумает ни од¬ной. (А. Эйнштейн)
  • Именно математика дает надежнейшие правила: кто им следует – тому не опасен обман чувств. (Л. Эйлер)
  • Цифры (числа) не управляют миром, но они показывают, как управляется мир. (И. Гете)
  • Пристальное, глубокое изучение природы есть источник самых плодотворных открытий математики". (Ж. Фурье)
  • ...Было бы легче остановить Солнце, легче было сдвинуть Землю, чем уменьшить сумму углов в треугольнике, свести параллели к схождению и раздвинуть перпендикуляры к прямой на расхождение. (В.Ф. Каган)
  • Счет и вычисления - основа порядка в голове. (Песталоцци)
  • Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их. (Д. Пойа)
  • Чтобы переварить знания, надо поглощать их с аппетитом. (А. Франц)
  • Предмет математики столь серьезен, что не следует упускать ни одной возможности сделать его более занимательным. (Б. Паскаль)

Заключение

На сегодняшний день мы не знаем сфер жизнедеятельности человека, где не нужна математика. Без неё не обходится ни одно новое открытие, не работает ни одно изобретение, не функционирует ни одно предприятие и государство, следовательно, диапазон всего того, где нужна математика, достаточно широк.

Когда мы приступаем в школе к изучению этой дисциплины, мы не знаем, сделаем ли мы открытие в физике, информатике, астрономии или другой науке. А может, будем инженером или архитектором, авиаконструктором или фармацевтом, т.е. специалистом той профессии, где математика будет нужна именно нам.

Не исключено, что будем домохозяйкой, визажистом или знаменитым модельером, которому необходимо делать чертежи для выкроек костюмов. Или судьба испытает нас в профессии программиста, юриста, капитана океанского судна или руководителя геологической экспедиции, поскольку всё это – сферы, где нужна математика просто в обязательном порядке.

При работе над проектом мы убедились, что каждый должен знать и изучать эту величайшую из всех наук, без которой нельзя представить своей жизни, поскольку математика является своеобразным проездным билетом, без которого невозможно отправиться в путь. Она развивает логическое мышление, целеустремлённость, воображение, умение находить выход из любых ситуаций.

Математика заставляет думать, помогает человечеству открывать и использовать законы природы и во все времена была могучим двигателем науки и техники.

Я убедилась, что математика просто необходима в жизни, быту и профессиях. В связи с этим я решила познакомить как можно больше учащихся с результатами моего исследования с целью развития интереса к этому предмету, расширения знаний по математике и кругозора в целом.

Выдвинутая гипотеза о том, что математика в нашей жизни необходима не только в определенных профессиях, но и в повседневной жизни – подтвердилась.

Список литературы

1. Аксенова М.Д. - Энциклопедия для детей. Т. 11. Математика / Главный ред. М.Д. Аксенова - М. Аванта, 1998.
2. Глейзер Г.И. «История математики в школе»
3. Сергеев И.С. «Примени математику»
4. Спивак А.В. Математический праздник. 4.1 - М.: Бюро Квантум, 2000 (Приложение к журналу «Квант», №2/2000).
5. Шалаева Г.П. Всё обо всём. Популярная энциклопедия для детей. Москва «Слово» 1997, 1999.

Смысл жизни - математические модели. Часть 1

1.Введение.

Около 1998 г. я попытался на основе известных мне элементов теории управления и системного анализа сформулировать некоторые ограничения жизненной стратегии в математических формулах. Еще ранее, в 1991-1994 гг. я читал курс лекций в Институте приборостроения по управлению в биологических и медицинских системах и ввел в эти лекции некоторые математические описания алгоритмов управления и жизненных стратегий. Элементы этих лекций я также ввел в настоящее эссе. Я, естественно, не претендовал на то, чтобы давать рецепты жизненной стратегии - для этого есть профессиональные философы, основатели философских и религиозных учений, пророки, мистики и др. Моя цель была значительно более скромная - посмотреть, как выглядят эти проблемы с математической стороны. Соответственно, и результат достаточно скромный - не следует искать прямого соответствия между математическими формулами и жизненными категориями -математика мало приспособлена для корректного описания этих категорий. Я добавил сюда ряд литературных отступлений, часть которых использовал в свое время для развлечения студентов.

2.Предварительные договоренности и ограничения.

Понятие «Cмысла жизни» многозначно - оно включает в себя объяснения ее биологического и социального механизмов (как?), ее причинно-следственных связей (почему?), ее целей (зачем?). Чаще всего при задавании этого вопроса он ассоциируется с последним (зачем?), т.е. понятия «смысл» и «цель» становятся в житейском смысле синонимами (хотя это совсем не так в математическом смысле). Основная часть дальнейшего изложения будет посвящена именно последнему пониманию - «Смысл жизни» как «Цель жизни».

Литературное отступление 1.

<<Ситуация очень схожа со сценой из «Фауста» Гете - при попытке перевода Библии на немецкий язык Фауст с первых же строк сталкивается с затруднением: «В начале было Слово». Дело в том, что в древнееврейском и древнегреческом (повидимому, Библию Фауст переводил с одного из этих классических языков, т.е. с подлинника или «Септуагинты») эта строка читается по-разному и в нее вкладывается многозначный смысл.

В древнегреческом это «Логос» - понятие включает в себя космический разум Вселенной, Главную Идею и многое другое. Этому понятию ближе всего перевод «Созидающая Мысль». Наиболее четкое изложение понятия - у Платона. Верховное существо мыслится как главный архитектор Вселенной.

В древнееврейском это в одном из вариантов «Каббала» - для мудреца-каббалиста возможность именно «Словом» буквально создавать миры - это абсолютная истина - надо только правильно произнести, со всеми придыханиями и ритуалами. В отличие от древнегреческого здесь «Слову» придается мистическое значение непосредственного созидания (кстати, исторически это предшествует понятию «Логоса»). Верховное существо мыслится как главный мастер - демиург, созидающий Вселенную.

При попытке найти немецкий аналог этого понятия Фауст перебирает понятия «Слово», «Мысль», «Дело» (в русском переводе, а на немецком еще и «Воля» - весьма важное добавление).

Вполне очевидно, что в понятии «Смысла жизни» имеются все эти варианты - и главной идеи, и главной мысли, и главного дела, а также главной цели и воли к ее достижению, а кроме того, для эзотериков (посвященных) - также и мистическое понимание.>>

Из вышеизложенного ясно, что “словам ведь соответствуют понятья” (тоже из “Фауста”) и если мы хотим поставить наше исследование на научную почву, то для каждого вполне очевидного (в житейском смысле) слова нужно определить понятие, которое мы имеем в виду, из множества возможных понятий, соответствующих данному слову. Витгенштейн определяет процесс ассоциации между словом и понятием как «языковую игру »: «Весь процесс употребления слов в языке можно представить и в качестве одной из тех игр, с помощью которых дети овладевают родным языком. Я буду называть эти игры “языковыми играми” и говорить иногда о некоем примитивном языке как о языковой игре».

Соответствие между словом и понятием проще всего, хотя и не очень наглядно, можно сделать на математическом уровне - на уровне моделей. Абстрактные математические модели, разумеется, будут гомеоморфными по отношению к описываемым явлениям жизни, но не изоморфными, т.е. модель есть подобие жизни, но жизнь не есть подобие модели. Поскольку мы исследуем понятие “Цели”, то в модели для нас главным будет ее прогностическое значение - если прогноз, сделанный по модели, позволяет правильно спланировать траекторию движения, стратегию и тактику поведения, то эту модель будем считать удовлетворительной. Поэтому наиболее частое возражение - это математика, а в жизни все не так - оказывается несостоятельным - модель не претендует на полноту описания, а служит только для прогноза.

Описания явлений в терминах и категориях культуры и нравственности представляют собой, по существу, перечень ограничений, накладываемых на модели поведения, которые могут также быть описаны математически, но являются более краткими, хотя и менее формально точными. Степень соответствия этих описаний реальным жизненным явлениям в смысле прогностическом примерно такова же, как у чисто математических моделей, то есть эти описания вполне прагматичны.

Еще одно существенное ограничение: чтобы не умножать сущностей сверх необходимого (Pluralitas non est ponenda sine necessitate - бритва Оккама), мы не будем привлекать при описании математических моделей Создателя, пришельцев, четвертое измерение, ауру, мидихлориан и Силу (из «Звездных войн») и т.п. (перечень можно продолжить до бесконечности).

Замечание по поводу списка литературы - перечень источников слишком велик для традиционного списка печатных изданий (от Геродота и Гегеля до Стругацких и Спинозы); он ориентирован на Интернет-источники в on - line - запрос в любом поисковике по фамилии автора дает ссылки на десятки сайтов.

3.Формирование иерархии целей на уровне индивидуума.

В кибернетике основным признаком живого организма считается свойство гомеостаза, т.е. удержания в заданных пределах основных параметров жизнедеятельности за счет адаптивного поведения.

Электромеханическая модель гомеостатической системы - известные черепашки Уолтера, удерживающиеся на краю стола, математическая модель дана, в частности, у Эшби:

Так как ступенчатые функции меняются скачками, то аналитическое интегрирование этих дифференциальных уравнений невозможно, но тем не менее эти уравнения однозначно определяют поведение системы, если заданы начальные условия (состояние системы), и решение с любой степенью точности может быть найдено с помощью численных методов.

Живые системы, определяемые уравнениями гомеостаза, соответствуют организмам, полностью осуществляющим адаптацию за счет безусловных рефлексов. Программа адаптации при этом полностью записана на генетическом уровне (в структуре ДНК). Объем информации, которую организм может передать своим потомкам, полностью определяется объемом генома.

Литературное отступление 2.

<< Рассмотрение организма как машины имеет очень давнюю традицию, хотя принято связывать эту аналогию с 18-м веком (веком Просвещения). Любопытно, что уже в то время делались небезуспешные попытки ввести для простейших организмов - машин понятия нравственности. У Потоцкого в «Рукописи, найденной в Сарагосе» один из героев (математик) рассуждает, имеет ли моллюск в раковине понятие о добре и зле. Первичная дихотомия добра и зла у него отождествляется с дихотомией «съедобно - несъедобно»: моллюск открывает свою раковину и поглощает съедобную частицу или закрывает раковину и отвергает несъедобную. Рост сложности системы (и, соответственно, усложнение нравственности) достигается за счет увеличения числа возможных выборов поведения. Таким образом, по Потоцкому, моллюск оперирует 2 понятиями, а гений на уровне Исаака Ньютона - 10 000 понятий - вот пример чистой математической индукции, без учета качественного изменения системы.>>

Следующая ступень более совершенного адаптивного поведения связана с введением понятия условного рефлекса. Моделирование условного рефлекса проводилось и для черепашек Уолтера, но наиболее популярной математической моделью систем с условным рефлексом является перцептрон Розенблата. Основная идея перцептрона - возможность изменения коэффициентов обратных связей и распределения ступенчатых функций из уравнений гомеостаза в процессе обучения. Результаты обучения (положительные или отрицательные) служат для подкрепления или ослабления обратных связей отдельных блоков системы. Тогда процесс в гомеостатической системе определяется не только ее начальным состоянием, но и процессом ее обучения, т.е. структура системы адаптируется к среде в процессе обучения. Объем информации, который передается потомкам, при этом существенно превышает объем генома.

Основной недостаток управления на этих 2 этапах - это запаздывание управления - управление использует только информацию о текущем состоянии окружающей среды, при изменении параметров среды между получением новой информации и формированием нового управления имеется временной лаг, что снижает шансы организма на выживание.

Следующая ступень совершенствования адаптивного поведения - построение организмом модели окружающей среды, прогнозирование по модели будущего состояния среды и планирование с помощью этой модели своего поведения. Здесь мы впервые сталкиваемся с понятием цели , так как планирование подразумевает решение некоторой задачи. Вопрос осознания этой задачи здесь ключевой, так как без постановки этой задачи нет и понятия цели. Является ли понятие цели присущим только человеку, или и другим высшим животным - это вопрос дискуссионный и не имеет принципиального значения для нашего исследования.

Математическая модель целенаправленных систем описана в общей теории систем (Месарович и Такахара) следующим образом:

причем пара (х, y ) принадлежит S тогда и только тогда, когда y является решением задачи принятия решений, задаваемой элементом х . Множество входных воздействий X называется множеством решений, множество Y - множеством выходных величин, которые могут получиться в ответ на входные воздействия х. Усложнение математической модели целенаправленных систем приводит к понятиям задачи удовлетворения, модели объекта управления и системы принятия решений. Для описания и анализа этих моделей требуется более глубокое знание теории множеств. При этом любую систему, преобразующую входы в выходы, можно описать как систему принятия решений. Феноменологический и целенаправленный подходы здесь зависят от того, на что направлен интерес исследователя. Мы, естественно, будем применять целенаправленный подход.

Если ввести в уравнения системы множество ограничений N , связанных с нравственными и культурными табу, уравнения примут вид:

С появлением понятия цели связано введение целевой функции, поиск экстремума которой является задачей управления. Заметим, что при адаптивном управлении достижение экстремума целевой функции необязательно. Целевая функция представляет функционал типа

t - время, Т - временной интервал, на котором производится интегрирование (например, длительность жизни). Поиск экстремума целевой функции производится на пространстве входных переменных x n . Решение с любой степенью точности по достижению экстремума целевой функции находится численными методами.

Значение Ф соответствует степени удовлетворения совокупности некоторых потребностей человека - как материальных, так и эмоциональных.

Здесь традиционно различают 2 типа задач: задачи целевого планирования и задачи оперативного управления (хотя на современном уровне вычислительной техники грань между этими 2 типами задач смазана, так как решение задач целевого планирования может при достаточно большой вычислительной мощности осуществляться в реальном времени).

Для задач целевого планирования в зависимости от вида целевой функции используются:

линейное программирование (Канторович) - требуется найти максимум функции

2. динамическое программирование (Беллман) - типовая задача, решаемая этим методом - задача о коммивояжере: имеется n +1 городов A 0 , A 1 ,… A n с заданными между ними расстояниями d ij ; требуется выбрать такой маршрут передвижения A 0 , A i 1 , A i 2 ,… A in , A 0 , при котором суммарный путь минимален;

3. эвристическое программирование (Нюэлл, Шоу, Минский) - при этом информация об объекте управления неполна и используются, в частности, экспертные системы принятия решений;

4. игровые методы , применяемые для конфликтных ситуаций и стохастических объектов управления - эта группа методов, в частности включает так называемые «деловые игры».

Для задач оперативного управления применяются различные методы автоматического регулирования в реальном времени:

1. Для детерминированных систем методы поиска экстремума: метод Гаусса-Зайделя, метод наискорейшего спуска (по максимуму градиента);

2. Для стохастических систем - корреляционно-экстремальный метод (Миллер, Тарасенко, Мелик-Шахназаров, Маркатун) - при этом определение оптимальных координат местоположения или их производных осуществляется путем отыскания экстремума корреляционной функции R ij или ее разновидностей.

Разумеется, приведенные перечни методов решения задач целевого планирования и оперативного управления далеко не полны и включают лишь наиболее традиционные и хорошо освоенные методы.

Резюмируем вышеизложенное: цель жизни в традиционной трактовке моделируется как нахождение максимума целевой функции Ф (счастья) за время жизни Т (заметим, что Т - непостоянно и зависит от стратегии поиска). Здесь мы впервые ввели в наше исследование понятие счастья. Оно (продолжая языковую игру опять же по Витгенштейну) является весьма сложным и, строго говоря, не может быть полностью раскрыто. Однако, чтобы можно было двигаться дальше, примем в нашей языковой игре, что в формуле для Ф могут быть учтены с определенными весовыми коэффициентами как материальные, так и эмоциональные стимулы удовлетворения индивидуума. Математизацию понятий нравственности и эмоций рассмотрим в разделах 8 и 9 настоящего исследования.

Поскольку в целевой функции Ф должны быть учтены со знаком “ - “ несчастья и страдания жизни, то результат Ф может быть и отрицательным. При пессимистическом подходе (если весовые коэффициенты страданий принимаются более высокими, чем весовые коэффициенты удовольствий) наиболее выгодная стратегия - полное отсутствие управления (действий), чтобы не увеличивать количество страданий (идеал при этом - нирвана). Легко понять, что при такой стратегии существование и индивидуума, и социума невозможны. Поэтому в дальнейшем не будем рассматривать такую стратегию, так как результат тривиален.

Литературное отступление 3.

<<Религиозные мыслители рассматривают Т , как величину, стремящуюся к бесконечности (с учетом загробного существования). Тогда стратегия поиска целевой функции приобретает совершенно другой вид. Приведем паскалевское доказательство существования бога, основанное на теории вероятностей:

Стратегия атеиста - Т1 = Т - время земной жизни, конечная величина, Ф1 - количество благ, приобретаемых человеком в земной жизни, возможный выигрыш - Ф1 - не зависит от вероятности существования бога р б .

Стратегия верующего - Т2 -> “бесконечность” ( длительность загробного существования) , Ф1 -> 0 - нулевое количество благ, получаемое верующим в земной жизни при праведном поведении, Ф2 -> “бесконечность” (бесконечное количество благ, получаемое верующим в загробной жизни, т.е.вечное блаженство), возможный выигрыш - Ф2 * р б .

Сравнивая возможные выигрыши, получаем, что стратегия верующего дает больший выигрыш при сколь угодно малом р б . Заметим, что если мы попытаемся определить р б по принципу научного эксперимента, то эта вероятность должна определяться как отношение числа удачных (подтверждающих существование бога) экспериментов к общему числу экспериментов. Вся проблема в том, что научная достоверность удачных экспериментов недоказуема из-за принципиально различной трактовки их результатов наблюдателем-атеистом и религиозным наблюдателем. >>

Поиск максимума Ф рассматривается как стратегическая задача долговременного планирования, или тактическая задача оперативного управления, причем имеет место логический парадокс - вид целевой функции определяется самим субъектом, осуществляющим стратегию поиска, при этом утрачивается объективность выбора - правильность может быть оценена лишь сторонним наблюдателем (или группой наблюдателей, представляющих социум). Какой из видов счастья объективно является оптимальным - здоровье и долголетие, богатство, власть, социальный престиж, мудрость, самоудовлетворение от наркотиков, алкоголя и разврата - нельзя определить на уровне индивидуума.

Литературное отступление 4.

<< Одно из древнейших доказательств субъективности определения счастья мы находим в рассказе о Солоне и Крезе (Геродот, Плутарх, Ксенофонт). Лидийский царь Крез, накопивший несметные богатства, показал их афинскому мудрецу Солону и спросил, кто, по его мнению, является счастливейшим человеком на земле. Солон привел в пример афинских граждан - одни пали смертью героев на войне за отечество, другие после праведной жизни умерли в святилище богини. Крез с возмущением спросил его - не знает ли он счастливых среди живущих, на что Солон сказал, что объявлять счастливым того, кто еще живет - то же, что объявлять победителем в беге того, кто еще не закончил дистанцию. Через некоторое время царство Креза было разорено завоевателями, а сам он приговорен к смерти на костре и на себе ощутил справедливость суждения Солона. Здесь в основе понимания счастья две системы ценностей: у Креза - материальные блага; у Солона - авторитет в обществе на основе высокого уровня Платоновского «тимоса». «Тимос» понимается как врожденное чувство справедливости, порождающее жажду общественного признания (Фукуяма).>>

Литературное отступление 5.

<<Насколько далеко мы ушли от понимания счастья во времена Солона и Креза, покажем на следующем отрывке из Кристофера Лога (цитируется по сказке Стругацких):

“Вы спрашиваете:

Что считаю

Я наивысшим счастьем на земле?

Две вещи:

Менять вот так же состоянье духа,

Как пенни выменял бы я на шиллинг,

Юной девушки

Услышать пенье

Вне моего пути, но вслед за тем,

Как у меня дорогу разузнала”.

Возможно, по парадоксальности этот отрывок ближе всего к современному пониманию счастья.

Остается добавить следующую цитату из Стругацких:

Разве такие вещи алгоритмизируются?!”

Но Стругацкие - не Святое Писание, и мы продолжим это безнадежное дело.>>

Источник парадокса при выборе целевой функции - построение иерархии целей по методу математической индукции: для решения малой тактической задачи (например, проведение коммерческой операции) определяется тактическая цель низшего уровня (получение определенной суммы денег), тактическая задача следующего уровня (достижение благосостояния) определяет методом индукции следующую цель (полное финансовое благополучие), следующий уровень (завоевание на этой основе власти в социуме) выдвигает следующую тактическую цель. Возникает иллюзия, что метод индукции применим и для человеческой жизни в целом. Однако здесь вступает в силу теорема Геделя: те задачи, которые формулировались внутри отдельных отрезков человеческой жизни, не могут быть отдельным человеком сформулированы для человеческой жизни в целом. Для объективной постановки задачи оптимизации целевой функции нужно перейти на следующий системный уровень - рассматривать не отдельного индивидуума, а социум.

4.Формирование целей на уровне социума .

В отличие от предыдущего раздела системой, для которой решаются задачи выживания, адаптации и оптимизации целевой функции, является не отдельно взятый индивидуум, а социум или его часть. На разных стадиях развития частью социума, которая для себя ставила и решала эти задачи, были род (семья), племя, народ (этнос), человечество в целом (последнее пока только в перспективе).

Выбор целевой функции и здесь достаточно произволен, но правильность этого выбора определяется на обозримых исторических отрезках по состоянию данной части социума. Стратегией управления для социума является, с одной стороны, некоторый набор ограничений, задающих правила социального поведения индивидуумов (нравственность, религия, мораль, культурные табу, юрисдикция и др.), с другой стороны, объединяющая часть социума идея, в частности, национальная идея (мировое господство, свобода и неограниченные возможности развития личности индивидуумов, гарантированное блаженство в загробной жизни, улучшение расы и создание сверхчеловека, высокий уровень благосостояния для всех и пр.).

О правильности выбора стратегии можно судить в историческом ракурсе, на основании анализа, какова стабильность социума при выбранной стратегии, какова сумма счастья и несчастья, получаемых членами социума. Заметим, что при анализе правильности стратегии мы должны опять-таки выйти за пределы анализируемой системы и рассматривать уже систему, включающую в качестве составных частей социум и окружающую среду (планету, а в перспективе и весь космос).

Ретроспективный (исторический) анализ правильности стратегии социума на отдельных исторических этапах имеет еще и то ограничение, что мироощущение индивидуумов на различных этапах цивилизации несопоставимо, а стало быть, определение счастья и несчастья члена социума невозможно. Для нас непостижимо мировосприятие древнего эллина, китайца эпохи Конфуция, ацтеков и майя. Попытки реконструкции этого мироощущения имеют литературную, но не объективную ценность.

Поэтому при выработке национальной идеи или кодекса нравственности и морали можно руководствоваться только явно отрицательными примерами (недолговечное существование Третьего Рейха, неудачная попытка построения коммунистического общества в России и др.).

Максимум того, что может сделать индивидуум в социуме при планировании своей личной стратегии:

понять целевую функцию своей части социума и привести свою личную стратегию в соответствие с ней (изменение части своей личности) - конфуцианский подход,

найти для себя часть социума, целевая функция которой более соответствует личной стратегии, стать членом этой части социума (и перенести все неудобства и дополнительные усилия, необходимые для смены окружения) - индивидуалистический подход,

изменить целевую функцию своей части социума, приведя ее в соответствие со своей личной целевой функцией (преобразование социума с минимальными шансами на успех) - революционный подход.

Саморегулирующиеся системы .

Существует иллюзия, что достаточно установить правила игры и при достаточно хороших правилах система сама будет развиваться в «хорошем» направлении и приведет общество в процветающее состояние. В наше время наиболее показательна здесь идея рыночной экономики, которая сама все отрегулирует и улучшит экономические показатели общества. Это можно сравнить с влиянием эволюции на животный мир планеты. Эволюция действительно эффективно отсеивает менее приспособленные организмы, остается только выяснить, были бы удовлетворены ее результатами динозавры и неандертальцы. Кстати, мозг неандертальца был больше по объему мозга современного человека, так что, возможно, вымирание неандертальцев закрыло человечеству путь к более интеллектуальному обществу.

5.Информационная модель управления.

Еще одно замечание касается способности индивидуума к выработке правильной тактики и стратегии управления. Информационная модель управления, разработанная Винером, определяет условие оптимального управления как:

H (X )>= H (Y ) (5),

Приведенное соотношение известно как закон необходимого разнообразия и в переводе на обыденный язык означает, что информационные возможности управляющего индивидуума должны быть не меньше, чем информационное богатство управляемого объекта, т.е. оптимальное управление при неполной информации об объекте невозможно.

Следовательно, при выработке жизненной стратегии необходимо учитывать:

Принципиальную неполноту информации, которую может собрать индивидуум в течение жизни.

Необходимость учета совокупной информации, накопленной в социуме.

Важность информационных фильтров для усвоения полезной для управления информации и отсева вредной.

Выбор за индивидуумом. Объективность выбора повышается при понимании различных сторон проблемы - личных возможностей, образа жизни в отдельных частях социума, перспектив развития себя и социума, добровольном принятии ограничений, действующих в социуме (правил игры). Очевидно, что научное понимание проблемы построения жизненной стратегии резко сужает возможность личного свободного выбора жизненных альтернатив.

Заметим, что ценность информационного богатства для управления была практически положена в основу отбора чиновников еще в Древнем Китае — для назначения на пост чиновник должен был сдавать экзамены по классической философии (по Конфуцию), по литературе, математике (включая геометрию). Результатом квалифицированной работы чиновников были успехи в строительстве (Великая Китайская стена), орошении, создании гигантского флота и прочих отраслях, где Древний Китай намного опередил окружаюшие страны.

Литературное отступление 6.

<<Информационная модель Винера имеет достаточно простой житейский аналог, который по-латыни формулируется так:

Ubi nil vales, ibi nil velis.

Там, где ты ничего не можешь, там ты ничего не должен хотеть - т.е. если твое информационное богатство значительно меньше информационного богатства объекта, ты не можешь управлять этим объектом. Покорись и не строй планов.

Сенека, из писем к Луцилию:

Ducunt fata volentem, nolentem trahunt”.

«Покорного судьба ведет, непокорного тащит».>>

Подход философа-стоика сформулирован для статической модели, когда функции H (X ) и H (Y ) являются постоянными в процессе решения. Однако, на практике чаще используется динамический подход - когда управляющий индивидуум проводит исследование структуры управляемого объекта. При этом повышается информационное богатство управляющего индивидуума H (X ) и становится возможным выполнение условие успешного управления (5).

Правда, возможен и другой вариант - когда управляющий индивидуум вместо повышения своего информационного богатства H (X ) уменьшает информационное богатство объекта H (Y ), т.е. переделывает управляемый объект с целью устранения помех для управления (например, уничтожает политическую оппозицию) - диктаторский подход.

Только это уже будет не тот объект и не тот управляющий субъект, а управление превращается в подавление.

Информационная модель управления приводит к задаче отбора управляющих субъектов, т. е. к выбору между классической демократией типа «один человек — один голос» и меритократией (правление достойных, т. е. в нашем случае наиболее квалифицированных в искусстве управления экспертов). Частично такая система двухступенчатых выборов реализована в США. При переходе к двухступенчатым выборам неизбежно встает вечный вопрос: «кто охраняет охранников» или « Quis custodiet ipsos custodes ?». Система отбора экспертов — это ключевой вопрос, но не безнадежный. Сообщество академических ученых и управленцев вполне способно сформировать компетентную экспертную группу.

6. Зависимость стратегии от возраста этноса и индивидуума

В предыдущих разделах молчаливо предполагалось, что личная стратегия индивидуума принимается им где-то в начале жизни и затем не меняется в течение всей жизни, т.е. индивидуум принимает “правила игры” и следует им (вид функционала F (x 1 , x 2 ,… x n ) не меняется в течение жизни Т ). Для стратегии 1 (конфуцианский подход) это возможно лишь при условии воспитания индивидуума в “правильном” духе, что характерно для сравнительно молодых этносов. Примеры: древняя Спарта, древний Китай, самураи Японии, рыцарство в средневековой Европе. Девиз рыцаря “без страха и упрека” (chevalier sans peur et sans reproche ) - “делай, что должен, и пусть будет, что будет”. Даже в условиях одного замкнутого типа цивилизации такой тип стратегии редко полностью выдерживался в течение жизни индивидуума. Например, Сократ был воспитан как воин, в молодости был образцовым воином, затем стал философом. Социальная динамика (социальные “лифты”) делала из рядовых рыцарей королей, из рядовых самураев - сёгунов; при этом стратегия поведения коренным образом менялась от стратегии (1) (конфуцианский подход) к стратегии (2) (индивидуалистический подход). Вместо рыцарей “без страха и упрека” появлялись фрилансеры (freelancers ) - вольные копейщики, которые искали свое счастье, выбирая на короткое время очередного сюзерена. В настоящее время фрилансеры (правда, совершенно в другом смысле) - одна из основных групп активного населения, особенно в творческих, креативных профессиях - программисты, дизайнеры и пр. Вместе с тем, большую группу составляют клерки, верные “корпоративному” духу, т.е. следующие конфуцианской этике. Такова общая динамика групп, характерная для постиндустриального общества.

С другой стороны, такая динамика характерна и для развития отдельной личности. В начале жизненного пути индивидуум, в основном, воспитывается и принимает идеологию жизни “по правилам”; по мере взросления и усвоения все большего объёма информации о своих возможностях (познание себя) и о внешней среде (познание жизни) (см. модель управления Винера в предыдущем разделе) усиливаются индивидуалистические или революционные черты; в конце жизни, когда силы иссякают, он вновь переходит к конфуцианскому стилю жизни.

С учетом изменения выбранной стратегии в течение жизни формула для целевой функции приобретает вид:

Где k +1 - число стратегий, используемых индивидуумом в течение жизни;

F i - функционал, определяемый видом стратегии i .

Литературное отступление 7 (и последнее).

<<” Si jeunesse savait , si vieillesse pouvait ”(Этьен, 1594 г.) - “Если бы молодость знала, если бы старость могла”. >>

Все-таки довольно точные аналогии между математическими формулами и житейской мудростью существуют, надо только покопаться.

культура искусство общество наука смысл жизни, целевое планирование, информационная модель

Светлана Кудрявцева
Применение дошкольниками математических знаний в повседневной жизни и играх

Применение дошкольниками математических знаний в повседневной жизни и играх

Каждый дошкольник - маленький исследователь с радостью и удивлением открывающий для себя окружающий мир. Практика показывает, что при условии правильно организованного педагогического процесса дети могут в дошкольном возрасте без перегрузок и напряжения усвоить математические знания и приобрести навыки .

Процесс применения математических знаний в дошкольном возрасте имеет свои особенности. Дошкольная жизнь - это игра , труд, занятия. Приобретаемые по математике знания следует использовать в указанных видах деятельности детей. Использование этих знаний в разных условиях делает их более значимыми для детей и прочными.

Окружающая жизнь предоставляет неограниченные возможности для математического развития ребенка . Задача педагога заключается в том, чтобы использовать многочисленные поводы и возможности для применения математических знаний в повседневной жизни и играх . Дать детям почувствовать практическое значение математики в жизни каждого человека .

Планируя работу по формированию элементарных математических представлений , педагог должен продумать содержание повседневной деятельности .

Можно выделить распространенные формы, в которых закрепляются, углубляются и расширяются математические знания , полученные на занятиях, воспитывается положительное эмоциональное отношение к этим занятиям. К таким формам можно отнести :

Проведение прогулок и экскурсий

Участие в разных видах труда

Игры-занятия

Участие в математических развлечениях

Игры с математическим содержанием .

ПРОГУЛКИ И ЭКСКУРСИИ – богатейший источник для расширения математического кругозора детей . Во время прогулок обращается внимание на количество, величину, форму, пространственное расположение объектов (сосчитай, сколько проехало машин, сравни по высоте дерево и дом, по величине голубя и воробья, сколько этажей в доме напротив, какой формы листья березы (осины, тополя) .

Воспитатель организует наблюдения за изменениями, происходящими в разное время года, обращает внимание на длительность дня : весной день удлиняется, осенью укорачивается, зимой становится совсем коротким. Дети наблюдают наступление сумерек, заход солнца и т. д., учатся ориентироваться в ближайшем окружении.

Наблюдения желательно подкреплять подбором соответствующих стихов, загадок. Загадки о растениях, о временах года и др. всегда интересны детям, расширяют их кругозор, знакомят с окружающим миром, явлениями природы.

Особо следует обратить внимание на постановку проблемных вопросов, создание проблемных ситуаций. Элементарные поисковые ситуации вызывают мыслительную активность детей, побуждают использовать имеющиеся знания в новых условиях . Например , как узнать, какое дерево толще (тоньше? Трое детей находят толстое дерево, берутся за руки, обхватывают его. Рядом дерево тоньше, его обхватывает один ребенок. Сравнивается количество детей и устанавливается, что чем толще дерево, тем больше число детей и наоборот.

Сколько шагов от скамейки до дерева? Почему получилось разное количество шагов? На глазах детей в очередной раз происходит важное открытие : количество шагов зависит от их размера.

Воспитателю необходимо создавать условия, в которых бы дети осознавали необходимость и самостоятельно решить задачу. Например , приглашая поиграть в игру «Хитрая лиса» , воспитатель ставит цель : кто будет самой хитрой лисой. Для выполнения этой задачи нужно пересчитать, сколько детей поймали первая и вторая лиса, и определить, на сколько больше (меньше) . Решая подобную задачу, ребенок вновь упражняется в счете и убеждается в значимости этих знаний .

ХОЗЯЙСТВЕННО-БЫТОВОЙ ТРУД, ТРУД В ПРИРОДЕ, РУЧНОЙ ТРУД являются теми видами деятельности, где эффективно можно применить математические знания .

Во время сборов на прогулку воспитатель обращает внимание на количество пуговиц и петель, длину пальто, форму платка. … в другой раз уточняет с детьми понятие пара : пара сапог, пара варежек, пара детей, что пара – это два, двое. С помощью песочных часов замеряет время, затраченное на одевание, уборки игрушек. Тем самым дети практически усваивают понятия «долго» , «быстро» , учатся ориентироваться во времени.

Дети расчищают площадку от снега, делают узкую и широкую дорожки, ходят по узкой, по широкой и устанавливают, что по узкой дорожке ходить труднее, чем по широкой, что по узкой может пройти один ребенок, а по широкой пара, тройка ребят.

При сервировке стола, при подготовке к занятиям создаются ситуации, заставляющие ребенка прибегать к проверке равночисленности (неравночисленности) множеств путем их сравнения : каких тарелок больше : глубоких или мелких? Чего больше ложек или вилок, столов или стульев, детей или приборов? В подобных ситуациях знания детьми усваиваются не формально, а осознанно .

Работа детей в уголке природы, на огороде тоже дает богатый материал для закрепления знаний о числе , счете, величине и способах ее измерения. Дети подсчитывают количество вновь распустившихся листьев, цветов. Рассматривают. На глазах ребенка постоянно возникают задачи с арифметическим содержанием : «Вчера на ветке распустилось 3 листочка, сегодня еще 1 сколько всего?

Все наблюдения, действия сопровождаются свободной беседой воспитателя и детей. Процесс сравнения, установления сходства и различия заставляет ребенка внимательно всматриваться , задумываться, самостоятельно делать выводы.

Можно давать детям несложные, практические задания. Например : узнай, сколько ног у собаки (кошки, курицы, у рыбы и подбери цифры, соответствующие числу ног у названных животных. Такие задания не только расширяют знания о животных , но и закрепляют счетные навыки детей, дают возможность легко овладеть несколькими понятиями, и самостоятельно решать вопросы, возникающие в процессе выполнения задания. Как же передвигаются рыбы, если у них нет ног? Какой цифрой обозначить отсутствие числа? и др. Самостоятельный поиск решения требует рассуждения, умения определять существенные признаки предмета (явления, умения обобщать.

Воспитателю надо хорошо знать детей своей группы, уровень их знаний , умений, их возможности и способности. Но прежде всего, он должен выяснить, кто из детей испытывает затруднения при усвоении математических знаний и вовремя оказать помощь. Он объясняет, показывает способы выполнения, создает практическую необходимость в применении знаний , вызывает интерес к математическим задачам , акцентирует внимание на достижениях и удачах и т. д.

Постепенно сам ребенок начинает находить в окружающей обстановке объекты для счета, измерения, сравнения, выделять в различных жизненных ситуациях количественные, пространственно – временные отношения и способы их определения.

ИГРЫ-ЗАНЯТИЯ.

Закрепление и обобщение математических знаний происходит на разных занятиях, органически включаясь в деятельность детей. Так, на занятиях по конструированию и изобразительной деятельности создаются многочисленные ситуации, в которых дошкольники упражняются в различении и назывании геометрических фигур, величины, цвета, делении целого на части и т. д.

Ориентировка в пространстве и времени лучше развивается на физкультурных и музыкальных занятиях

в работе с 4-5летними детьми особое место отводится играм – занятиям по сюжетам знакомых сказок. так называемый математический театр . Такие занятия помогают избежать умственных и психических перегрузок, создает свободу выбора и возможности высказаться каждому ребенку. А постоянно подкрепляемая игровая мотивация изменяет отношение к математическому содержанию задач .

Виды математических театров :

Плоскостной, би-ба-бо театры по сюжетам знакомых сказок (Репка, Теремок, Три медведя, Колобок и др.) .

Цифры- персонажи.

Геометрический театр (объемных фигур, плоскостных фигур) .

Игры-занятия могут быть интегрированнными. Они требуют серьезной подготовки : анализа программных задач соответствующих разделов программы, работы с методической литературой, подготовки оборудования. Как показывает практика, такие занятия надо проводить на обобщающем этапе обучения по отдельным разделам программы.

МАТЕМАТИЧЕСКИЕ РАЗВЛЕЧЕНИЯ позволяют педагогу расширить и углубить знания старших дошкольников , активизировать их мыслительную деятельность, воспитывать интерес к математике . Это могут быть конкурсы, викторины, игры-путешествия, олимпиады.

ДИДАКТИЧЕСКИЕ ИГРЫ С МАТЕМАТИЧЕСКИМ СОДЕРЖАНИЕМ .

Их система выстроена с учетом усложнения программных задач по ФЭМП, Дидактические игры по формированию математических представлений условно делятся на следующие группы :

1. Игры с цифрами и числами

2. Игры путешествие во времени

3. Игры на ориентирование в пространстве

4. Игры с геометрическими фигурами

5. Игры на логическое мышление

К первой группе игр относится обучение детей счету в прямом и обратном порядке. Используя сказочный сюжет детей, знакомят с образованием всех чисел в пределах 10, путем сравнивания равных и неравных групп предметов. Сравниваются две группы предметов, расположенные то на нижней, то на верхней полоске счетной линейки. Это делается для того, чтобы у детей не возникало ошибочное представление о том, что большее число всегда находится на верхней полосе, а меньшее на - нижней.

Играя в такие дидактические игры как "Какой цифры не стало? ", "Сколько? ", "Путаница? ", "Исправь ошибку", "Убираем цифры", "Назови соседей", дети учатся свободно оперировать числами в пределах 10 и сопровождать словами свои действия.

Дидактические игры, такие как "Задумай число", "Число как тебя зовут? ", "Составь табличку", "Составь цифру", "Кто первый назовет, которой игрушки не стало? " и многие другие используются на занятиях в свободное время, с целью развития у детей внимания, памяти, мышления.

Вторая группа математических игр (игры - путешествие во времени) служит для знакомства детей с днями недели. Объясняется, что каждый день недели имеет свое название. Для того, чтобы дети лучше запоминали название дней недели, они обозначаются кружочками разного цвета. Наблюдение проводится несколько недель, обозначая кружочками каждый день. Это делается специально для того, чтобы дети смогли самостоятельно сделать вывод, что последовательность дней недели неизменна. Детям рассказывается о том, что в названии дней недели угадывается, какой день недели по счету : понедельник - первый день после окончания недели, вторник- второй день, среда - середина недели, четверг - четвертый день, пятница - пятый. После такой беседы предлагаются игры с целью закрепления названий дней недели и их последовательности. Дети с удовольствием играют в игру "Живая неделя. " Для игры вызываются к доске 7 детей, пересчитываются по порядку и получают кружочки разного цвета, кружочки разного цвета, обозначающие дни недели. Дети выстраиваются в такой последовательности, как по порядку идут дни недели. Например , первый ребенок с желтым кружочком в руках, обозначающий первый день недели - понедельник и т. д.

Затем игра усложняется . Дети строятся с любого другого дня недели. В дальнейшем, можно использовать следующие игры "Назови скорее", "Дни недели", "Назови пропущенное слово", "Круглый год", "Двенадцать месяцев", которые помогают детям быстро запомнить название дней недели и название месяцев, их последовательность.

В третью группу входят игры на ориентирование в пространстве. Пространственные представления детей постоянно расширяются и закрепляются в процессе всех видов деятельности. Задачей педагога является научить детей ориентироваться в специально созданных пространственных ситуациях и определять свое место по заданному условию. При помощи дидактических игр и упражнений дети овладевают умением определять словом положение того или иного предмета по отношению к другому. Например , справа от куклы стоит заяц, слева от куклы - пирамида и т. д. Выбирается ребенок и игрушка прячется по отношению к нему (за спину, справа, слева и т. д.) . Это вызывает интерес у детей и организовывает их на занятие. Для того, чтобы заинтересовать детей, чтобы результат был лучше, используются предметные игры с появлением какого-либо сказочного героя. Например , игра "Найди игрушку", - "Ночью, когда в группе никого не было" - говорится детям, - "к нам прилетал Карлсон и принес в подарок игрушки. Карлсон любит шутить, поэтому он спрятал игрушки, а в письме написал, как их можно найти. "