Про психологию. Учения и методики

Динамика относительного движения. Теоремы об изменении количества движения точки и системы Теорема об изменении количества движения материальной системы

Теорема об изменении количества движения точки

Так как масса точки постоянна, а ее ускорение то уравне­ние, выражающее основной закон динамики, можно представить в виде

Уравнение выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна геометрической сумме действующих на точку сил.

Проинтегрируем это уравнение. Пусть точка массы m , движущаяся под действием силы (рис.15), имеет в момент t =0 скорость , а в момент t 1 -скорость .

Рис.15

Умножим тогда обе части равенства на и возь­мем от них определенные интегралы. При этом справа, где интегри­рование идет по времени, пределами интегралов будут 0 и t 1 , а слева, где интегрируется скорость, пределами интеграла будут соответствую­щие значения скорости и . Так как интеграл от равен , то в результате получим:

.

Стоящие справа интегралы пред­ставляют собою импульсы действующих сил. Поэтому окончательно будем иметь:

.

Уравнение выражает теорему об изменении коли­чества движения точки в конечном виде: изменение коли­чества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех действующих на точку сил за тот же промежуток времени (рис. 15).

При решении задач вместо векторного уравнения часто пользуются уравнениями в проекциях.

В случае прямолинейного движения, происходящего вдоль оси Ох теорема выражается первым из этих уравнений.

Пример 9. Найти закон движения материальной точки массы m , движущейся вдоль оси х под действием постоянной по модулю силы F (рис. 16) при начальных условиях: , при .

Рис.16

Решение. Составим дифференциальное уравнение движения точки в проекции на ось х : . Интегрируя это уравнение, находим: . Постоянная определяется из начального условия для скорости и равна . Окончательно

.

Далее, учитывая, что v = dx/ dt , приходим к дифференциальному уравнению: , интегрируя которое получаем

Постоянную определяем из начального условия для координаты точки. Она равна . Следовательно, закон движения точки имеет вид

Пример 10 . Груз веса Р (рис.17) начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F = kt . Найти закон движения груза.

Рис.17

Решение. Выберем начало отсчета системы координат О в начальном положении груза и направим ось х в сторону движения (рис. 17). Тогда начальные условия имеют вид: x (t = 0) = 0,v(t = 0) = 0. На груз действуют силы F, P и сила реакции плоскости N . Проекции этих сил на ось х имеют значения F x = F = kt , Р x = 0, N x = 0, поэтому соответствующее уравнение движения можно записать так: . Разделяя переменные в этом дифференциальном уравнении и затем интегрируя, получим: v = g kt 2 /2P + C 1 . Подставляя начальные данные (v (0) = 0), находим, чтоC 1 = 0, и получаем закон изменения скорости .

Последнее выражение, в свою очередь, является дифференциальным уравнением, интегрируя которое найдем закон движения материальной точки: . Входящую сюда постоянную определяем из второго начального условия х (0) = 0. Легко убедиться, что . Окончательно

Пример 11. На груз, находящийся в покое на горизонтальной гладкой плоскости (см. рис. 17) на расстоянии a от начала координат, начинает действовать в положительном направлении осиx сила F = k 2 (P /g )x , где Р – вес груза. Найти закон движения груза.

Решение. Уравнение движения рассматриваемого груза (материальной точки) в проекции на ось х

Начальные условия уравнения (1) имеют вид: x (t = 0) = a , v(t = 0) = 0.

Входящую в уравнение (1) производную по времени от скорости представим так

.

Подставляя это выражение в уравнение (1) и сокращая на (P /g ), получим

Разделяя переменные в последнем уравнении, находим, что . Интегрируя последнее, имеем: . Используя начальные условия , получаем , и, следовательно,

, . (2)

Поскольку сила действует на груз в положительном направлении оси х , то ясно, что в том же направлении он должен и двигаться. Поэтому в решении (2) следует выбрать знак "плюс". Заменяя дальше во втором выражении (2) на , получаем дифференциальное уравнение для определения закона движения груза. Откуда, разделяя переменные, имеем

.

Интегрируя последнее, находим: . После нахождения постоянной окончательно получаем

Пример 12. Шар M массы m (рис.18) падает без начальной скорости под действием силы тяжести. При падении шар испытывает сопротивление , где постоянный коэффициент сопротивления. Найти закон движения шара.

Рис.18

Решение. Введем систему координат с началом в точке местоположения шара при t = 0, направив ось у вертикально вниз (рис. 18). Дифференциальное уравнение движения шара в проекции на ось у имеет тогда вид

Начальные условия для шара записываются так: y (t = 0) = 0, v(t = 0) = 0.

Разделяя переменные в уравнении (1)

и интегрируя, находим: , где . Или после нахождения постоянной

или . (2)

Отсюда следует, что предельная скорость, т.е. скорость при , равна .

Чтобы найти закон движения, заменим в уравнении (2) v на dy/ dt . Тогда, интегрируя полученное уравнение с учетом начального условия, окончательно находим

.

Пример 13. Научно-исследо­ватель­ская подводная лодка шарообразной формы и массы m = = 1.5×10 5 кг начинает погружаться с выключенными двигателями, имея горизонтальную скорость v х 0 = 30 м/с и отрицательную плавучесть Р 1 = 0.01mg , где – векторная сумма архимедовой выталкивающей силы Q и силы тяжести mg , действующих на лодку (рис. 20). Сила сопротивления воды , кг/с . Определить уравнения движения лодки и ее траекторию.

В качестве системы, о которой идёт речь в теореме, может выступать любая механическая система, состоящая из любых тел.

Формулировка теоремы

Количеством движения (импульсом) механической системы называют величину, равную сумме количеств движения (импульсов) всех тел, входящих в систему. Импульс внешних сил, действующих на тела системы, - это сумма импульсов всех внешних сил, действующих на тела системы.

( кг·м/с)

Теорема об изменении количества движения системы утверждает

Изменение количества движения системы за некоторый промежуток времени равно импульсу внешних сил, действующих на систему, за тот же промежуток времени.

Закон сохранения количества движения системы

Если сумма всех внешних сил, действующих на систему, равна нулю, то количество движения (импульс) системы есть величина постоянная.

, получим выражение теоремы об изменении количества движения системы в дифференциальной форме :

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения ) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

(моме́нт коли́чества движе́ния м 2 ·кг·с −1 )

Теорема об изменении момента количества движения относительно центра

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

dk 0 /dt = M 0 (F ) .

Теорема об изменении момента количества движения относительно оси

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) .

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Дифференцируем выражение момента количества движения (кинетического момента k 0) по времени:

Так как dr /dt = V , то векторное произведение V m V (коллинеарных векторов V и m V ) равно нулю. В то же время d(m V) /dt = F согласно теореме о количестве движения материальной точки. Поэтому получаем, что

dk 0 /dt = r F , (3.3)

где r F = M 0 (F ) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r , m V ), а вектор M 0 (F ) ⊥ плоскости (r ,F ), окончательно имеем

dk 0 /dt = M 0 (F ) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1. Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F ) = 0. Тогда из теоремы (3.4) следует, что k 0 = const ,

т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2. Пусть M z (F ) = 0, т.е. сила пересекает ось z или ей параллельна. В этом случае, как это видно из третьего из уравнений (3.5), k z = const ,

т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным.

Доказательство теоремы обь ихменении количества движения

Пусть система состоит из материальных точек с массами и ускорениями . Все силы, действующие на тела системы, разделим на два вида:

Внешние силы - силы, действующие со стороны тел, не входящих в рассматриваемую систему. Равнодействующую внешних сил, действующих на материальную точку с номером i обозначим .

Внутренние силы - силы, с которыми взаимодействуют друг с другом тела само́й системы. Силу, с которой на точку с номером i действует точка с номером k , будем обозначать , а силу воздействия i -й точки на k -ю точку - . Очевидно, что при , то

Используя введённые обозначения, запишем второй закон Ньютона для каждой из рассматриваемых материальных точек в виде

Учитывая, что и суммируя все уравнения второго закона Ньютона, получаем:

Выражение представляет собой сумму всех внутренних сил, действующих в системе. По третьему закону Ньютона в этой сумме каждой силе соответствует сила такая, что и, значит, выполняется Поскольку вся сумма состоит из таких пар, то и сама сумма равна нулю. Таким образом, можно записать

Используя для количества движения системы обозначение , получим

Введя в рассмотрение изменение импульса внешних сил , получим выражение теоремы об изменении количества движения системы в дифференциальной форме:

Таким образом, каждое из последних полученных уравнений позволяет утверждать: изменение количества движения системы происходит только в результате действия внешних сил, а внутренние силы никакого влияния на эту величину оказать не могут.

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

где и - значения количества движения системы в моменты времени и соответственно, а - импульс внешних сил за промежуток времени . В соответствии со сказанным ранее и введёнными обозначениями выполняется

Количество движения мерой механического движения, если механическое движение перейдет в механическое. Например, механическое движение бильярдного шара (рис. 22) до удара переходит в механическое движение шаров после удара. Для точки количество движения равно произведению .

Мерой действия силы в этом случае является импульс силы

. (9.1)

Импульс определяет действие силы за промежуток времени. Для материальной точки теорему об изменении количества движения можно использовать в дифференциальной форме
(9.2) или интегральной (конечной) форме
. (9.3)

Изменение количества движения материальной точки за какой-то промежуток времени равно импульсу всех сил, приложенных к точке за то же время.

Рисунок 22

При решении задач теорема (9.3) чаще используется в проекциях на координатные оси
;

; (9.4)

.

С помощью теоремы об изменении количества движения точки можно решать задачи, в которых на точку или тело, движущееся поступательно, действуют силы постоянные или переменное, зависящие от времени, а в число заданных и искомых величин входят время движения и скорости в начале и конце движения. Задачи с применением теоремы решаются следующей последовательности:

1. выбирают систему координат;

2. изображают все действующие на точку заданные (активные) силы и реакции;

3. записывают теорему об изменении количества движения точки в проекциях на выбранные оси координат;

4. определяют искомые величины.

ПРИМЕР 12.

Молот весом G=2т падает с высоты h=1м на заготовку за время t=0,01с и производит штамповку детали (рис. 23). Определить среднюю силу давления молота на заготовку.

РЕШЕНИЕ.

1. На заготовку действуют сила тяжести молота и реакция опоры. Величина опорной реакции изменяется со временем, поэтому рассмотрим среднее ее значение
.

2. направим ось координат у по вертикали вниз и применим теорему об изменении количества движения точки в проекции на эту ось:
, (1) где-- скорость молота в конце удара;

-- начальная скорость молота в момент соприкосновения с заготовкой.

3. Для определения скорости составим дифференциальное уравнение движения молота в проекции на ось у:

. (2)

Разделим переменные, проинтегрируем дважды уравнение (2):
;

;

. Постоянные интегрирования С 1 , С 2 найдем из начальных условий. При t=0 V y =0, тогда С 1 =0; у=0, тогда С 2 =0. Следовательно, молот движется по закону
, (3) а скорость движения молота изменяется по закону
. (4) Время движения молота выразим из (3) и подставим в (4)
;
. (5)

4. Проекцию импульса внешних сил на ось у найдем по формуле:
. (6) Подставим (5) и (6) в (1):
, откуда находим реакцию опоры, и, следовательно, искомое давление молота на заготовку
т.

Рисунок 24

К

где М-масса системы, V c -скорость центра масс. Теорему об изменении количества движения механической системы можно записать в дифференциальной и конечной (интегральной) форме:
;

. (9.7)

оличество движения механической системы можно определить как сумму количеств движения точек системы
. (9.5) Количество движения системы или твердого тела можно определить, зная массу системы и скорость центра масс
, (9.6)

Изменение количества движения механической системы за некоторый промежуток времени равно сумме импульсов внешних сил, Действующих за то же время. Иногда удобнее пользоваться теоремой об изменении количества движения в проекции на оси координат
; (9.8)
. (9.9)

Закон сохранения количества движения устанавливает, что при отсутствии внешних сил количество движения механической системы остается постоянным. Действие внутренних сил не может изменить количества движения системы. Из уравнения (9.6) видно, что при
,
.

Если
, то
или
.

Д

гребного винта или пропеллера, реактивного движения. Кальмары движутся рывками, выбрасывая воду из мускульного мешка по принципу водомета (рис. 25). Отталкиваемая вода обладает известным количеством движения, направленным назад. Кальмар получает при этом соответствующую скорость движения вперед за счет реактивной силы тяги, так как перед выпрыгиванием кальмара силауравновешивается силой тяжести.

ействие закона сохранения количества движения механической системы можно проиллюстрировать на примере явления отдачи или отката при стрельбе, работы

Применение теоремы об изменении количества движения позволяет исключить из рассмотрения все внутренние силы.

ПРИМЕР 13.

На железнодорожной платформе, свободно стоящей на рельсах, установлена лебедка А с барабаном радиуса r (рис. 26). Лебедка предназначена для перемещения по платформе груза В массой m 1 . Масса платформы с лебедкой m 2 . Барабан лебедки вращается по закону
. В начальный момент времени система была подвижна. Пренебрегая трением, найти закон изменения скорости платформы после включения лебедки.

РЕШЕНИЕ.

1. Рассмотрим платформу, лебедку и груз как единую механическую систему, на которую действуют внешние силы: сила тяжести груза и платформыи реакциии
.

2. Так как все внешние силы перпендикулярны оси х, т.е.
, применим закон сохранения количества движения механической системы в проекции на ось х:
. В начальный момент времени система была неподвижна, следовательно,

Выразим количество движения системы в произвольный момент времени. Платформа движется поступательно со скоростью , груз совершает сложное движение, состоящее из относительного движения по платформе со скоростьюи переносного движения вместе с платформой со скоростью., откуда
. Платформа будет перемещаться в сторону, противоположную относительному движению груза.

ПРИМЕР 14.

М

РЕШЕНИЕ.

1. Применим теорему об изменении количества движения механической системы в проекции на ось х. Так как все действующие на систему внешние силы вертикальны, то
, тогда
, откуда
. (1)

2. Выразим проекцию количества движения на ось х для рассматриваемой механической системы
,

еханическая система состоит из прямоугольной вертикальной плиты 1 массойm 1 =18кг, движущейся вдоль горизонтальных направляющих и груза D массой m 2 =6кг. В момент времени t 0 =0, когда плита двигалась со скоростью u 0 =2м/с, груз начал движение вдоль желоба в соответствии с уравнением S=AD=0,4sin(t 2) (S-в метрах, t-в секундах), (рис. 26). Определить скорость плиты в момент времени t 1 =1с, используя теорему об изменении количества движения механической системы.

где ,
-- количество движения пластины и груза соответственно.


;
, где--абсолютная скорость грузаD. Из равенства (1) следует, что К 1х +К 2х =С 1 или m 1 u x +m 2 V Dx =C 1 . (2) Для определения V Dx рассмотрим движение груза D как сложное, считая его движение по отношению к пластине относительным, а движение самой пластины переносным, тогда
, (3)
;или в проекции на ось х:. (4) Подставим (4) в (2):
. (5) Постоянную интегрирования С 1 определим из начальных условий: при t=0 u=u 0 ; (m 1 +m 2)u 0 =C 1 . (6) Подставляя значение постоянной С 1 в уравнение (5), получаем

м/с.

Пусть материальная точка движется под действием силы F . Требуется определить движение этой точки по отношению к подвижной системе Oxyz (см. сложное движение материальной точки), которая движется известным образом по отношению к неподвижной системе O 1 x 1 y 1 z 1 .

Основное уравнение динамики в неподвижной системе

Запишем абсолютное ускорение точки по теореме Кориолиса

где a абс – абсолютное ускорение;

a отн – относительное ускорение;

a пер – переносное ускорение;

a кор – кориолисово ускорение.

Перепишем (25) с учетом (26)

Введем обозначения
- переносная сила инерции,
- кориолисова сила инерции. Тогда уравнение (27) приобретает вид

Основное уравнение динамики для изучения относительного движения (28) записывается как же как и для абсолютного движения, только к действующим на точку силам надо добавить переносную и кориолисову силы инерции.

Общие теоремы динамики материальной точки

При решении многих задач можно пользоваться выполненными заранее заготовками, полученными на основе второго закона Ньютона. Такие методы решения задач объединены в этом разделе.

Теорема об изменении количества движения материальной точки

Введем следующие динамические характеристики:

1. Количество движения материальной точки – векторная величина, равная произведению массы точки на вектор ее скорости


. (29)

2. Импульс силы

Элементарный импульс силы – векторная величина, равная произведению вектора силы на элементарный промежуток времени


(30).

Тогда полный импульс

. (31)

При F =const получим S =Ft .

Полный импульс за конечный промежуток времени можно вычислить только в двух случаях, когда действующая на точку сила постоянная или зависит то времени. В других случаях необходимо выразить силу как функцию времени.

Равенство размерностей импульса (29) и количества движения (30) позволяет установить между ними количественную взаимосвязь.

Рассмотрим движение материальной точки M под действием произвольной силы F по произвольной траектории.

ОУД:
. (32)

Разделяем в (32) переменные и интегрируем

. (33)

В итоге, принимая во внимание (31), получаем

. (34)

Уравнение (34) выражает следующую теорему.

Теорема : Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы, действующей на точку, за тот же интервал времени.

При решении задач уравнение (34) необходимо спроектировать на оси координат

Данной теоремой удобно пользоваться, когда среди заданных и неизвестных величин присутствуют масса точки, ее начальная и конечная скорость, силы и время движения.

Теорема об изменении момента количества движения материальной точки

М
омент количества движения материальной точки
относительно центра равен произведению модуля количества движения точки на плечо, т.е. кратчайшее расстояние (перпендикуляр) от центра до линии, совпадающей с вектором скорости

, (36)

. (37)

Взаимосвязь между моментом силы (причиной) и моментом количества движения (следствием) устанавливает следующая теорема.

Пусть точка M заданной массы m движется под действием силы F .

,
,

, (38)

. (39)

Вычислим производную от (39)

. (40)

Объединяя (40) и (38), окончательно получим

. (41)

Уравнение (41) выражает следующую теорему.

Теорема : Производная по времени от вектора момента количества движения материальной точки относительно некоторого центра равна моменту действующей на точку силы относительно того же центра.

При решении задач уравнение (41) необходимо спроектировать на оси координат

В уравнениях (42) моменты количеств движения и силы вычисляются относительно координатных осей.

Из (41) вытекает закон сохранения момента количества движения (закон Кеплера).

Если момент силы, действующей на материальную точку, относительно какого-либо центра равен нулю, то момент количества движения точки относительно этого центра сохраняет свою величину и направление.

Если
, то
.

Теорема и закон сохранения используются в задачах на криволинейное движение, в особенности при действии центральных сил.

Просмотр: эта статья прочитана 14066 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Количество движения

Количество движения материальной точки - векторная величина, равная произведению массы точки на вектор ее скорости.

Единицей измерения количества движения является (кг м/с).

Количество движения механической системы - векторная величина, равная геометрической сумме (главному вектору) количества движения механической системы равняется произведению массы всей системы на скорость ее центра масс.

Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (например, вращение тела вокруг неподвижной оси, проходящей через центр масс тела).

В случае сложного движения, количество движения системы не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).

Импульс силы

Импульс силы характеризует действие силы за некоторый промежуток времени.

Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов.

Теорема об изменении количества движения материальной точки

(в дифференциальной форм е ):

Производная по времени от количества движения материальной точки равна геометрической сумме действующих на точки сил.

(в интегральной форме ):

Изменение количества движения материальной точки за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за этот промежуток времени.

Теорема об изменении количества движения механической системы

(в дифференциальной форме ):

Производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

(в интегральной форме ):

Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов внешних сил, действующих на систему за этот промежуток времени.

Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.

Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.

Закон сохранения количества движения системы

  1. Если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равна нулю, то проекция количества движения на эту ось является величиной постоянной.

Выводы :

  1. Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.
  2. Теорема об изменении количества движения механической системы не характеризует вращательное движение механической системы, а только поступательное.

Приведен пример: Определить количество движения диска определенной массы, если известна его угловая скорость и размер.

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов


Применение теоремы об изменении кинетического момента
Пример решения задачи на применение теоремы об изменении кинетического момента для определения угловой скорости тела, совершающего вращение вокруг неподвижной оси.