Про психологию. Учения и методики

Представление о корне и степени. Квадратный корень

Видеоурок 2: Свойства корня степени n > 1

Лекция: Корень степени n > 1 и его свойства

Корень


Предположим, Вы имеете уравнение вида:

Решением данного уравнения будет х 1 = 2 и х 2 = (-2). В качестве ответа подходят оба решения, поскольку числа с равными модулями при возведении в четную степень дают одинаковый результат.


Это был простой пример, однако, что мы можем сделать в том случае, если, например,

Давайте попробуем построить график функции y=x 2 . Её графиком является парабола:

На графике необходимо найти точки, которым соответствует значение у = 3. Данными точками является:

Это означает, что данное значение нельзя назвать целым числом, но можно представить в виде корня квадратного.


Любой корень - это иррациональное число . К иррациональным числам относятся корни, непериодические бесконечные дроби.


Квадратный корень - это неотрицательное число "а", подкоренное выражение которого равно данному числу "а" в квадрате.

Например,


То есть в результате мы получим только положительное значение. Однако в качестве решения квадратного уравнения вида

Решением будет х 1 = 4, х 2 = (-4).

Свойства квадратного корня

1. Какое бы значение не принимала величина x, данное выражение верно в любом случае:

2. Сравнение чисел, содержащих квадратный корень. Чтобы сравнить данные числа, необходимо и одно, и второе число внести под знак корня. То число будет больше, чье подкоренное выражение больше.

Вносим число 2 под знак корня

А теперь давайте внесем число 4 под знак корня. В результате этого получим

И только теперь два полученных выражения можно сравнить:

3. Вынесение множителя из под корня.

Если подкоренное выражение может разложиться на два множителя, один из которых можно вынести из под знака корня, то необходимо пользоваться данным правилом.


4. Существует свойство, обратное данному - внесение множителя под корень. Этим свойством мы заведомо воспользовались во втором свойстве.

Корень n -й степени и его свойства

Что такое корень n -й степени? Как извлечь корень?

В восьмом классе вы уже успели познакомиться с квадратным корнем . Решали типовые примеры с корнями, применяя те или иные свойства корней. Также решали квадратные уравнения , где без извлечения квадратного корня – никак. Но квадратный корень – это лишь частный случай более широкого понятия – корня n -й степени . Помимо квадратного, бывает, например, кубический корень, корень четвёртой, пятой и более высоких степеней. И для успешной работы с такими корнями неплохо бы всё-таки для начала быть на «ты» с корнями квадратными.) Поэтому у кого проблемы с ними – настоятельно рекомендую повторить.

Извлечение корня – это одна из операций, обратных возведению в степень.) Почему «одна из»? Потому, что, извлекая корень, мы ищем основание по известным степени и показателю . А есть ещё одна обратная операция – нахождение показателя по известным степени и основанию. Такая операция называется нахождением логарифма. Она более сложная, чем извлечение корня и изучается в старших классах.)

Итак, знакомимся!

Во-первых, обозначение. Квадратный корень, как мы уже знаем, обозначается вот так: . Называется этот значок очень красиво и научно – радикал . А как обозначают корни других степеней? Очень просто: над «хвостиком» радикала дополнительно пишут показатель той степени, корень которой ищется. Если ищется кубический корень, то пишут тройку: . Если корень четвёртой степени, то, соответственно, . И так далее.) В общем виде корень n-й степени обозначается вот так:

Где .

Число a , как и в квадратных корнях, называется подкоренным выражением , а вот число n для нас здесь новое. И называется показателем корня .

Как извлекать корни любых степеней? Так же, как и квадратные – сообразить, какое число в n-й степени даёт нам число a .)

Как, например, извлечь кубический корень из 8? То есть ? А какое число в кубе даст нам 8? Двойка, естественно.) Вот и пишут:

Или . Какое число в четвёртой степени даёт 81? Тройка.) Значит,

А корень десятой степени из 1? Ну, ежу понятно, что единица в любой степени (в том числе и в десятой) равна единице.) То есть:

И вообще .

С нулём та же история: ноль в любой натуральной степени равен нулю. Стало быть, .

Как видим, по сравнению с квадратными корнями, здесь уже посложнее соображать, какое число в той или иной степени даёт нам подкоренное число a . Сложнее подбирать ответ и проверять его на правильность возведением в степень n . Ситуация существенно облегчается, если знать в лицо степени популярных чисел. Поэтому сейчас – тренируемся. :) Распознаём степени!)

Ответы (в беспорядке):

Да-да! Ответов побольше, чем заданий.) Потому, что, к примеру, 2 8 , 4 4 и 16 2 – это всё одно и то же число 256.

Потренировались? Тогда считаем примерчики:

Ответы (тоже в беспорядке): 6; 2; 3; 2; 3; 5.

Получилось? Великолепно! Движемся дальше.)

Ограничения в корнях. Арифметический корень n -й степени.

В корнях n-й степени, как и в квадратных, тоже есть свои ограничения и свои фишки. По своей сути, они ничем не отличаются от таковых ограничений для квадратных корней.

Не подбирается ведь, да? Что 3, что -3 в четвёртой степени будет +81. :) И с любым корнем чётной степени из отрицательного числа будет та же песня. А это значит, что извлекать корни чётной степени из отрицательных чисел нельзя . Это запретное действие в математике. Такое же запретное, как и деление на ноль. Поэтому такие выражения, как , и тому подобные – не имеют смысла .

Зато корни нечётной степени из отрицательных чисел – пожалуйста!

Например, ; , и так далее.)

А из положительных чисел можно со спокойной душой извлекать любые корни, любых степеней:

В общем, понятно, думаю.) И, кстати, корень совершенно не обязан извлекаться ровно. Это просто примеры такие, чисто для понимания.) Бывает, что в процессе решения (например, уравнений) выплывают и довольно скверные корни. Что-нибудь типа . Из восьмёрки кубический корень извлекается отлично, а тут под корнем семёрка. Что делать? Ничего страшного. Всё точно так же. – это число, которое при возведении в куб даст нам 7. Только число это очень некрасивое и лохматое. Вот оно:

Причём, это число никогда не кончается и не имеет периода: цифры следуют совершенно беспорядочно. Иррациональное оно… В таких случаях ответ так и оставляют в виде корня.) А вот если корень извлекается чисто (к примеру, ), то, естественно, надо корень посчитать и записать:

Снова берём наше подопытное число 81 и извлекаем из него корень четвёртой степени:

Потому, что три в четвёртой будет 81. Ну, хорошо! Но ведь и минус три в четвёртой тоже будет 81!

Получается неоднозначность:

И, чтобы её устранить, так же, как и в квадратных корнях, ввели специальный термин: арифметический корень n -й степени из числа a – это такое неотрицательное число, n -я степень которого равна a .

А ответ с плюсом-минусом называется по-другому – алгебраический корень n -й степени . У любой чётной степени алгебраическим корнем будет два противоположных числа . В школе же работают только с арифметическими корнями. Поэтому отрицательные числа в арифметических корнях попросту отбрасываются. Например, пишут: . Сам плюс, конечно же, не пишут: его подразумевают .

Всё, казалось бы, просто, но… А как же быть с корнями нечётной степени из отрицательных чисел? Ведь там-то всегда при извлечении получается отрицательное число! Так как любое отрицательное число в нечётной степени также даёт отрицательное число. А арифметический корень работает только с неотрицательными числами! На то он и арифметический.)

В таких корнях делают вот что: выносят минус из-под корня и ставят перед корнем. Вот так:

В таких случаях говорят, что выражен через арифметический (т.е. уже неотрицательный) корень .

Но есть один пунктик, который может вносить путаницу, – это решение простеньких уравнений со степенями. Например, вот такое уравнение:

Пишем ответ: . На самом деле, этот ответ – всего-навсего сокращённая запись двух ответов :

Непонятка здесь заключается в том, что чуть выше я уже написал, что в школе рассматриваются только неотрицательные (т.е. арифметические) корни. А тут один из ответов с минусом… Как быть? Да никак! Знаки здесь – это результат решения уравнения . А сам корень – величина всё равно неотрицательная! Смотрите сами:

Ну как, теперь понятнее? Со скобочками?)

С нечётной степенью всё гораздо проще – там всегда получается один корень. С плюсом или с минусом. Например:

Итак, если мы просто извлекаем корень (чётной степени) из числа, то мы всегда получаем один неотрицательный результат. Потому что это – арифметический корень. А вот, если мы решаем уравнение с чётной степенью, то мы получаем два противоположных корня , поскольку это – решение уравнения .

С корнями нечётных степеней (кубическими, пятой степени и т.д.) проблем никаких. Извлекаем себе и не паримся со знаками. Плюс под корнем – значит, и результат извлечения с плюсом. Минус – значит, минус.)

А теперь настал черёд познакомиться со свойствами корней . Некоторые уже будут нам знакомы по квадратным корням, но добавится и несколько новых. Поехали!

Свойства корней. Корень из произведения.

Это свойство уже знакомо нам из квадратных корней. Для корней других степеней всё аналогично:

То есть, корень из произведения равен произведению корней из каждого множителя отдельно .

Если показатель n чётный, то оба подкоренных числа a и b должны быть, естественно, неотрицательными, иначе формула смысла не имеет. В случае нечётного показателя ограничений никаких нет: выносим минусы из-под корней вперёд и дальше работаем с арифметическими корнями.)

Как и в квадратных корнях, здесь эта формула одинаково полезна как слева направо, так и справа налево. Применение формулы слева направо позволяет извлекать корни из произведения . Например:

Эта формула, кстати говоря, справедлива не только для двух, а для любого числа множителей. Например:

Также по этой формуле можно извлекать корни из больших чисел: для этого число под корнем раскладывается на множители поменьше, а дальше извлекаются корни отдельно из каждого множителя.

Например, такое задание:

Число достаточно большое. Извлекается ли из него корень ровно – тоже без калькулятора непонятно. Хорошо бы его разложить на множители. На что точно делится число 3375? На 5, похоже: последняя цифра – пятёрка.) Делим:

Ой, снова на 5 делится! 675:5 = 135. И 135 опять на пятёрку делится. Да когда ж это кончится!)

135:5 = 27. С числом 27 всё уже ясно – это тройка в кубе. Значит,

Тогда:

Извлекли корень по кусочкам, ну и ладно.)

Или такой пример:

Снова раскладываем на множители по признакам делимости. Каким? На 4, т.к. последняя парочка цифр 40 – делится на 4. И на 10, т.к. последняя цифра – ноль. Значит, можно поделить одним махом сразу на 40:

Про число 216 мы уже знаем, что это шестёрка в кубе. Стало быть,

А 40, в свою очередь, можно разложить как . Тогда

И тогда окончательно получим:

Чисто извлечь корень не вышло, ну и ничего страшного. Всё равно мы упростили выражение: мы же знаем, что под корнем (хоть квадратным, хоть кубическим - любым) принято оставлять самое маленькое число из возможных.) В этом примере мы проделали одну весьма полезную операцию, тоже уже знакомую нам из квадратных корней. Узнаёте? Да! Мы вынесли множители из-под корня. В данном примере мы вынесли двойку и шестёрку, т.е. число 12.

Как вынести множитель за знак корня?

Вынести множитель (или множители) за знак корня очень просто. Раскладываем подкоренное выражение на множители и извлекаем то, что извлекается.) А что не извлекается – так и оставляем под корнем. Смотрите:

Раскладываем число 9072 на множители. Так как у нас корень четвёртой степени, в первую очередь пробуем разложить на множители, являющиеся четвёртыми степенями натуральных чисел – 16, 81 и т.д.

Попробуем поделить 9072 на 16:

Поделилось!

А вот 567, похоже, делится на 81:

Значит, .

Тогда

Свойства корней. Умножение корней.

Рассмотрим теперь обратное применение формулы – справа налево:

На первый взгляд, ничего нового, но внешность обманчива.) Обратное применение формулы значительно расширяет наши возможности. Например:

Хм, ну и что тут такого? Умножили и всё. Здесь и впрямь ничего особенного. Обычное умножение корней. А вот такой пример!

Отдельно из множителей корни чисто не извлекаются. Зато из результата – отлично.)

Опять же формула справедлива для любого числа множителей. Например, надо посчитать вот такое выражение:

Здесь главное – внимание. В примере присутствуют разные корни – кубические и четвёртой степени. И ни один из них точно не извлекается…

А формула произведения корней применима только к корням с одинаковыми показателями. Поэтому сгруппируем в отдельную кучку кубические корни и в отдельную – четвёртой степени. А там, глядишь, всё и срастётся.))

И калькулятора не понадобилось.)

Как внести множитель под знак корня?

Следующая полезная вещь – внесение числа под корень . Например:

Можно ли убрать тройку внутрь корня? Элементарно! Если тройку превратить в корень , то сработает формула произведения корней. Итак, превращаем тройку в корень. Раз у нас корень четвёртой степени, то и превращать будем тоже в корень четвёртой степени.) Вот так:

Тогда

Корень, между прочим, можно сделать из любого неотрицательного числа. Причём той степени, какой хотим (всё от конкретного примера зависит). Это будет корень из n-й степени этого самого числа:

А теперь – внимание! Источник очень грубых ошибок! Я не зря здесь сказал про неотрицательные числа. Арифметический корень работает только с такими. Если у нас в задании где-то затесалось отрицательное число, то либо минус так и оставляем, перед корнем (если он снаружи), либо избавляемся от минуса под корнем, если он внутри. Напоминаю, если под корнем чётной степени получается отрицательное число, то выражение не имеет смысла .

Например, такое задание. Внести множитель под знак корня:

Если мы сейчас внесём под корень минус два, то жестоко ошибёмся:

В чём здесь ошибка? А в том, что четвёртая степень, в силу своей чётности, благополучно «съела» этот минус, в результате чего заведомо отрицательное число превратилось в положительное . А верное решение выглядит так:

В корнях нечётных степеней минус хоть и не «съедается», но его тоже лучше оставлять снаружи:

Здесь корень нечётной степени – кубический, и мы имеем полное право минус тоже загнать под корень. Но предпочтительнее в таких примерах минус также оставлять снаружи и писать ответ выраженным через арифметический (неотрицательный) корень , поскольку корень хоть и имеет право на жизнь, но арифметическим не является .

Итак, с внесением числа под корень тоже всё ясно, я надеюсь.) Переходим к следующему свойству.

Свойства корней. Корень из дроби. Деление корней.

Это свойство также полностью повторяет таковое для квадратных корней. Только теперь мы его распространяем на корни любой степени:

Корень из дроби равен корню из числителя, делённому на корень из знаменателя .

Если n чётно, то число a должно быть неотрицательным, а число b – строго положительным (на ноль делить нельзя). В случае нечётного показателя единственным ограничением будет .

Это свойство позволяет легко и быстро извлекать корни из дробей:

Идея понятна, думаю. Вместо работы с дробью целиком мы переходим к работе отдельно с числителем и отдельно со знаменателем.) Если дробь десятичная или, о ужас, смешанное число, то предварительно переходим к обыкновенным дробям:

А теперь посмотрим, как эта формула работает справа налево. Здесь тоже выявляются очень полезные возможности. Например, такой примерчик:

Из числителя и знаменателя корни ровно не извлекаются, зато из всей дроби – прекрасно.) Можно решить этот пример и по-другому – вынести в числителе множитель из-под корня с последующим сокращением:

Как вам будет угодно. Ответ всегда получится один – правильный. Если ошибок не наляпать по дороге.)

Итак, с умножением/делением корней разобрались. Поднимаемся на следующую ступеньку и рассматриваем третье свойство – корень в степени и корень из степени .

Корень в степени. Корень из степени .

Как возвести корень в степень? Например, пусть у нас есть число . Можно это число возвести в степень? В куб, например? Конечно! Помножить корень сам на себя три раза, и – по формуле произведения корней:

Здесь корень и степень как бы взаимоуничтожились или скомпенсировались. Действительно, если мы число, которое при возведении в куб даст нам тройку, возведём в этот самый куб, то что получим? Тройку и получим, разумеется! И так будет для любого неотрицательного числа. В общем виде:

Если показатели степени и корня разные, то тоже никаких проблем. Если знать свойства степеней.)

Если показатель степени меньше показателя корня, то просто загоняем степень под корень:

В общем виде будет:

Идея понятна: возводим в степень подкоренное выражение, а дальше упрощаем, вынося множители из-под корня, если это возможно. Если n чётно, то a должно быть неотрицательным. Почему – понятно, думаю.) А если n нечётно, то никаких ограничений на a уже нету:

Разберёмся теперь с корнем из степени . То есть, в степень будет возводиться уже не сам корень, а подкоренное выражение . Здесь тоже ничего сложного, но простора для ошибок значительно больше. Почему? Потому, что в игру вступают отрицательные числа, которые могут вносить путаницу в знаках. Пока начнём с корней нечётных степеней – они гораздо проще.

Пусть у нас есть число 2. Можно его возвести в куб? Конечно!

А теперь – обратно извлечём из восьмёрки кубический корень:

С двойки начали, к двойке же и вернулись.) Ничего удивительного: возведение в куб скомпенсировалось обратной операцией – извлечением кубического корня.

Другой пример:

Здесь тоже всё путём. Степень и корень друг друга скомпенсировали. В общем виде для корней нечётных степеней можно записать такую формулку:

Эта формула справедлива для любого действительного числа a . Хоть положительного, хоть отрицательного.

То есть, нечётная степень и корень этой же степени всегда друг друга компенсируют и получается подкоренное выражение. :)

А вот с чётной степенью этот фокус может уже не пройти. Смотрите сами:

Здесь пока ничего особенного. Четвёртая степень и корень четвёртой же степени тоже друг друга уравновесили и получилась просто двойка, т.е. подкоренное выражение. И для любого неотрицательного числа будет то же самое. А теперь всего лишь заменим в этом корне два на минус два. То есть, посчитаем вот такой корень:

Минус у двойки благополучно «сгорел» из-за четвёртой степени. И в результате извлечения корня (арифметического!) мы получили положительное число. Было минус два, стало плюс два.) А вот если бы мы просто бездумно «сократили» степень и корень (одинаковые же!), то получили бы

Что является грубейшей ошибкой, да.

Поэтому для чётного показателя формула корня из степени выглядит вот так:

Здесь добавился нелюбимый многими знак модуля, но в нём страшного ничего нет: благодаря ему, формула также работает для любого действительного числа a. И модуль просто отсекает минусы:

Только в корнях n-й степени появилось дополнительное разграничение на чётные и нечётные степени. Чётные степени, как мы видим, более капризные, да.)

А теперь рассмотрим новое полезное и весьма интересное свойство, уже характерное именно для корней n-й степени: если показатель корня и показатель степени подкоренного выражения умножить (разделить) на одно и то же натуральное число, то значение корня не изменится .

Чем-то напоминает основное свойство дроби, не правда ли? В дробях мы тоже числитель и знаменатель можем умножать (делить) на одно и то же число (кроме нуля). На самом деле, это свойство корней – тоже следствие основного свойства дроби. Когда мы познакомимся со степенью с рациональным показателем , то всё станет ясно. Что, как и откуда.)

Прямое применение этой формулы позволяет нам упрощать уже совершенно любые корни из любых степеней. В том числе, если показатели степени подкоренного выражения и самого корня разные . Например, надо упростить вот такое выражение:

Поступаем просто. Выделяем для начала под корнем четвёртую степень из десятой и – вперёд! Как? По свойствам степеней, разумеется! Выносим множитель из-под корня или работаем по формуле корня из степени.

А вот упростим, используя как раз это свойство. Для этого четвёрку под корнем представим как :

И теперь – самое интересное – сокращаем мысленно показатель под корнем (двойку) с показателем корня (четвёркой)! И получаем:

Цели урока:

Образовательная : создать условия для формирования у обучающихся целостного представления о корне n-ой степени, навыков сознательного и рационального использования свойств корня при решении различных задач.

Развивающая : создать условия для развития алгоритмического, творческого мышления, развивать навыки самоконтроля.

Воспитательные : способствовать развитию интереса к предмету, активности, воспитывать аккуратность в работе, умение выражать собственное мнение, давать рекомендации.

Ход урока

1. Организационный момент.

Добрый день! Добрый час!

Как я рада видеть вас.

Прозвенел уже звонок

Начинается урок.

Улыбнулись. Подравнялись.

Друг на друга поглядели

И тихонько дружно сели.

2. Мотивация урока.

Выдающийся французский философ, ученый Блез Паскаль утверждал: «Величие человека в его способности мыслить». Сегодня мы попытаемся почувствовать себя великими людьми, открывая знания для себя. Девизом к сегодняшнему уроку будут слова древнегреческого математика Фалеса:

Что есть больше всего на свете? - Пространство.

Что быстрее всего? - Ум.

Что мудрее всего? - Время.

Что приятнее всего? - Достичь желаемого.

Хочется, чтобы каждый из вас на сегодняшнем уроке достиг желаемого результата.

3. Актуализация знаний.

1. Назовите взаимообратные алгебраические операции над числами. (Сложение и вычитание, умножение и деление)

2. Всегда ли можно выполнить такую алгебраическую операцию, как деление? (Нет, делить на нуль нельзя)

3. Какую еще операцию вы можете выполнять с числами? (Возведение в степень)

4. Какая операция будет ей обратной? (Извлечение корня)

5. Корень какой степени вы можете извлекать? (Корень второй степени)

6. Какие свойства квадратного корня вы знаете? (Извлечение квадратного корня из произведения, из частного, из корня, возведение в степень)

7. Найдите значения выражений:

Из истории. Ещё 4000 лет назад вавилонские ученые составили наряду с таблицами умножения и таблицами обратных величин (при помощи которых деление чисел сводилось к умножению) таблицы квадратов чисел и квадратных корней чисел. При этом они умели находить приблизительное значение квадратного корня из любого целого числа.

4. Изучение нового материала.

Очевидно, что в соответствии с основными свой-ствами степеней с натуральными показателями, из любого положительного числа существует два проти-воположных значения корня четной степени, напри-мер, числа 4 и -4 являются корнями квадратными из 16, так как (-4)2 = 42 = 16, а числа 3 и -3 являют-ся корнями четвертой степени из 81, так как (-3)4 = З4 = 81.

Кроме того, не существует корня четной степени из отрицательного числа, поскольку четная степень любого действительного числа неотрицательна . Что же касается корня нечетной степени, то для любого действительного числа существует только один ко-рень нечетной степени из этого числа. Например, 3 есть корень третьей степени из 27, так как З3 = 27, а -2 есть корень пятой степени из -32, так как (-2)5 = 32.

В связи с существованием двух корней четной сте-пени из положительного числа, введем понятие ариф-метического корня, чтобы устранить эту двузначность корня.

Неотрицательное значение корня n-й степени из неотрицательного числа называется арифметическим корнем.

Обозначение: - корень n-й степени.

Число n называется степенью арифметического корня. Если n = 2, то степень корня не указывается и пишется. Корень второй степени принято называть квадратным, а корень третьей степени - кубическим.

B, b2 = а, а ≥ 0, b ≥ 0

B, bп = а, п - четное а ≥ 0, b ≥ 0

п - нечетное а, b - любые

Свойства

1. , а ≥ 0, b ≥ 0

2. , а ≥ 0, b >0

3. , а ≥ 0

4. , m, n, k - натуральные числа

5. Закрепление нового материала.

Устная работа

а) Какие выражения имеют смысл?

б) При каких значениях переменной а имеет смысл выражение?

Решить № 3, 4, 7, 9, 11.

6. Физкультминутка.

Во всех делах умеренность нужна,

Пусть будет главным правилом она.

Гимнастикой займись, коль мыслил долго,

Гимнастика не изнуряет тела,

Но очищает организм всецело!

Закройте глаза, расслабьте тело,

Представьте - вы птицы, вы вдруг полетели!

Теперь в океане дельфином плывете,

Теперь в саду яблоки спелые рвете.

Налево, направо, вокруг посмотрели,

Открыли глаза, и снова за дело!

7. Самостоятельная работа.

Работа в парах с. 178 №1, №2.

8. Д/з. Выучить п.10 (с.160-161), решить № 5, 6, 8, 12, 16(1, 2).

9. Итоги урока. Рефлексия деятельности.

Достиг ли урок своей цели?

Чему вы научились?

Определение
Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
.
Она определена для всех действительных .

Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
.
Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

Для отрицательных , степенная функция определяется по формуле:
.
Поэтому она не определена в точке .

Для иррациональных значений показателя p , степенная функция определяется по формуле:
,
где a - произвольное положительное число, не равное единице: .
При , она определена для .
При , степенная функция определена для .

Непрерывность . Степенная функция непрерывна на своей области определения.

Свойства и формулы степенной функции при x ≥ 0

Здесь мы рассмотрим свойства степенной функции при неотрицательных значениях аргумента x . Как указано выше, при некоторых значениях показателя p , степенная функция определена и для отрицательных значений x . В этом случае, ее свойства можно получить из свойств при , используя четность или нечетность. Эти случаи подробно рассмотрены и проиллюстрированы на странице « ».

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;
при ;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

Корни - определение, формулы, свойства

Определение
Корень из числа x степени n - это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x - это корень степени 2: .

Кубический корень из числа x - это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.

y = x p при различных значениях показателя p .

Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Если , то .

Производная степенной функции

Производная n-го порядка:
;

Вывод формул > > >

Интеграл от степенной функции

P ≠ - 1 ;
.

Разложение в степенной ряд

При - 1 < x < 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f(z) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
То есть квадратный корень имеет два значения: + и - .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m – натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter