Про психологию. Учения и методики

Какие бывают органеллы клетки. Структура и функции клетки

Органоиды - постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) - система внутренних мембран цитоплазмы, образующих крупные полости - цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети - гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы - мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии - энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы - гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, - органоиды, характерные для растительных клеток. Существуют лейкопласты - бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. - зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки - тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков - тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь - в гранах, а реакции темновой фазы - в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы - округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са 2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка - образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички - органоиды движения; они имеют единый план строения - наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме - цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

Органоиды (органеллы) - вцитологиипостоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки сорганами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в еёцитоплазме. Частоядрои внутриядерные структуры (например,ядрышко) не называют органоидами.Клеточную мембрану,ресничкии жгутикитоже обычно не причисляют к органоидам.

Рецепторыи прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят.

Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.

Клеточные органоиды (имеющие мембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядро

Система генетической детерминации и регуляции белкового обмена

Эндоплазмати-ческая сеть гранулярная (ЭПС)

Синтез гормонов, ферментов, белков плазмы, мембран; сегрегация (обособление) синтезированных белков; образование мембран вакуолярной системы, плазмолеммы, синтез фосфолипидов

Эндоплазмати-ческая сеть гладкая (ЭПС)

Метаболизм липидов и некоторых внутриклеточных полисахаридов

Пластинчатый комплекс Гольджи

синтез полисахаридов

Секреция, сегрегация и накопление продуктов, синтезированных в ЭПС,

синтез полисахаридов

Лизосомы первичные

Гидролиз биополимеров

Гидролиз биополимеров

Лизосомы вторичные (см. вакуоль)

Результат фагоцитоза, пиноцитоза, трнсмембранный транспорт веществ

Аутолизосома

Аутолиз клеточных компонентов

Пероксисомы

Окисление аминокислот, образование перекисей

Окисление аминокислот, образование перекисей, защитная функция

Митохондрии

Синтез АТФ

Синтез АТФ

Кинетопласт

Комплексная функция: движение и энергообеспечение движения

Пластиды:

хлоропласты

хроматофоры лейкопласты хромопласты

Фотосинтез, синтез и гидролиз вторичного крахмала (амилопласты); масла (элайопласты); белка (протеинопласты, протеопласты)

Вакуоль

Внутриклеточное пищеварение

Накопления воды и питательных веществ

Клеточные органоиды (имеющие немембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядрышко

Место образования рибосомных РНК

Центриоли (центросомы)

Формирование веретена деления

Рибосомы

Синтез белка

Синтез белка

Микротрубочки

Цитоскелет, участие в транспорте веществ и органоидов

Микро-филаменты

Сократимые элементы цитоскелета, подвижность клетки, внутриклеточное движение веществ

Микрофибриллы

Сократительная функция клетки и внутриклеточного перемещения органоидов

Жгутики

Органы движения

Органы движения

Реснички

Увеличение всасывающей поверхности

Органы движения, защиты

Диктиосомы, десмосомы

Высоко контактные мембраны

Орган межклеточного контакта

Органоиды эукариот

(общая информация)

Органелла

Основная функция

Структура

Организмы

Примечания

Хлоропласт

(Пластиды)

фотосинтез

двух-мембранная

растения,

протисты

имеют собственную ДНК; предполагают что хлоропласты возникли из цианобактерийв результате симбиогенеза

Эндоплазма-тический ретикулум

трансляция и свёртывание новых белков (гранулярный эндоплазматический ретикулум), синтезлипидов

(агранулярный эндоплазматический ретикулум)

одно-мембранная

все эукариоты

на поверхности гранулярного эндоплазма-тического ретикулума находится большое количество рибосом, свёрнут как мешок; агранулярный эндоплазма-тический ретикулум свёрнут в трубочки

Аппарат Гольджи

сортировка и преобразование белков

одно-мембранная

все

эукариоты

асимметричен - цистерны, располагающиеся ближе к ядру клетки, содержат наименее зрелые белки, а от цистерн, располагающихся дальше от ядра, отпочковываются пузырьки, содержащие полностью зрелые белки

Митохондрия

энергетическая

двух-мембранная

большинство эукариот

имеют свою собственную митохонд-риальную ДНК; предполагают, что митохондрии возникли в результате симбиогенеза

Вакуоль

запас, поддержаниегомеостаза, в клетках растений - поддержание формы клетки (тургор)

одномембранная

эукариоты, более выражена у растений

Ядро

Хранение ДНК,транскрипцияРНК

двухмембранная

всеэукариоты

содержит основную частьгенома

Рибосомы

синтезбелкана основе матричных РНКпри помощи транспортныхРНК

РНК/белок

эукариоты,

прокариоты

Везикулы

запасают или транспортируют питательные вещества

одномембранная

всеэукариоты

Лизосомы

мелкие лабильные образования, содержащие ферменты, в частности гидролазы, принимающие участие в процессах переваривания фагоцитированнойпищи и автолиза (саморастворение органелл)

одномембранная

большинство эукариот

Центриоли (клеточный центр)

Центр организациицитоскелета. Необходим для процесса клеточного деления (равномерно распределяет хромосомы)

немембранная

эукариоты

Меланосома

хранение пигмента

одномембранная

животные

Миофибриллы

сокращение мышечных волокон

сложно организованный пучок белковых нитей

животные

Предполагают, чтомитохондрии ипластиды - это бывшиесимбионтысодержащих их клеток, некогда самостоятельныепрокариоты

Лекция: Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки - основа её целостности

Клетка является сложной многокомпонентной открытой системой, что значит – она имеет постоянную связь с внешней средой путем обмена энергии и веществ.

Органоиды клеток

Плазматическая мембрана - это двойной слой из фосфолипидов, пронизанный молекулами протеинов. На наружном слое располагаются гликолипиды и гликопротеины. Проницаема избирательно для жидкостей. Функции - защитная, а также связь и взаимодействие клеток меж собой.

Ядро. Функционально – хранит ДНК. Ограничено двойной пористой мембраной, связанной через ЭПС с наружной мембраной клетки. Внутри ядра находится ядерный сок и располагаются хромосомы.

Цитоплазма. Представляет собой гелеобразное полужидкое внутреннее содержимое клетки. Функционально – обеспечивает связь органоидов между собой, является средой их существования.

Ядрышко. Это – собранные вместе части рибосом. Округлое, очень мелкое тело, расположенное недалеко от ядра. Функция – синтез рРНК.

Митохондрии. Двумембранный органоид. Внутренняя мембрана собрана в складки, называемые кристами, на них располагаются ферменты, участвующие в реакциях окислительного фосфорилирования, то есть синтеза АТФ, что и является основной функцией.

Рибосомы. Состоят из большей и меньшей субъединиц, не имеют мембран. Функционально – участвуют в сборке белковых молекул.

Эндоплазматический ретикулум (ЭПС) . Одномембранная структура во всем объеме цитоплазмы, состоящая из полостей сложной геометрии. На гранулярной ЭПС расположены рибосомы, на гладкой – ферменты для синтеза жиров.

Аппарат Гольджи. Это уплощенные цистернообразные полости мембранной структуры. От них могут отделяться пузырьки с необходимыми для метаболизма веществами. Функции – накопление, преобразование, сортировка липидов и белков, образование лизосом.

Клеточный центр. Это область цитоплазмы, в которой содержатся центриоли – микротрубочки. Их функция – правильное распределение генетического материала при митозе, образование митотического веретена.

Лизосомы. Одномембранные пузырьки с ферментами, участвующие в переваривании макромолекул. Функционально – растворяют крупные молекулы, уничтожают старые структуры в клетке.

Клеточная стенка. Представляет собой плотную оболочку из целлюлозы, осуществляет скелетную функцию у растений.

Пластиды. Мембранные органоиды. Существует 3 вида – хлоропласты, где совершается фотосинтез, хромопласты, содержащие красящие вещества, и лейкопласты, являющиеся хранилищами крахмала.

Вакуоли. Пузырьки, которые в растительных клетках могут занимать до 90% объема клетки и содержать питательные вещества. У животных – вакуоли пищеварительные, сложной структуры, небольшого размера. Отвечают также за выделение ненужных веществ во внешнюю среду.

Микрофиламенты (микротрубочки). Белковые немембранные структуры, отвечающие за движение органоидов и цитоплазмы внутри клетки, появление жгутиков.

Компоненты клетки являются взаимосвязанными пространственно, химически и физически и находятся в постоянном взаимодействии между собой.

Самостоятельная биосистема, которая обладает основными свойствами всего живого. Так, она может развиваться, размножаться, двигаться, адаптироваться и изменяться. Кроме этого, любым клеткам присущ обмен веществ, специфическое строение, упорядоченность структур и функций.

Наука, которая занимается изучением клеток, - это цитология. Ее предметом являются структурные единицы многоклеточных животных и растений, одноклеточные организмы - бактерии, простейшие и водоросли, состоящие всего из одной клетки.

Если говорить об общей организации структурных единиц живых организмов, то они состоят из оболочки и ядра с ядрышком. Также в их состав входят органоиды клетки, цитоплазма. На сегодняшний день высокоразвиты разнообразные методы исследования, но ведущее место занимает микроскопия, которая позволяет изучать строение клеток и исследовать ее основные структурные элементы.

Что такое органоид?

Органоиды (их еще называют органеллами) - постоянные составляющие элементы любой клетки, которые делают ее целостной и выполняют определенные функции. Это структуры, которые являются жизненно необходимыми для поддержания ее деятельности.

К органоидам относятся ядро, лизосомы, эндоплазматическая сеть и комплекс Гольджи, вакуоли и везикулы, митохондрии, рибосомы, а также клеточный центр (центросома). Сюда также относят структуры, которые образуют цитоскелет клетки (микротрубочки и микрофиламенты), меланосомы. Отдельно следует выделить органоиды движения. Это реснички, жгутики, миофибриллы и псевдоножки.

Все эти структуры взаимосвязаны и обеспечивают скоординированную деятельность клеток. Именно поэтому на вопрос: «Что такое органоид?» - можно ответить, что это компонент, который можно приравнять к органу многоклеточного организма.

Классификация органоидов

Клетки отличаются размерами и формой, а также своими функциями, но при этом они имеют сходное химическое строение и единый принцип организации. При этом вопрос о том, что такое органоид и какие это структуры, достаточно дискуссионный. Так, например, лизосомы или вакуоли иногда не относят к клеточным органеллам.

Если говорить о классификации данных компонентов клеток, то выделяют немембранные и мембранные органоиды. Немембранные - это клеточный центр и рибосомы. Органоиды движения (микротрубочки и микрофиламенты) также лишены мембран.

В основе строения мембранных органелл лежит наличие биологической мембраны. Одномебранные и двумембранные органоиды имеют оболочку с единой структурой, которая состоит из двойного слоя фосфолипидов и белковых молекул. Она отделяет цитоплазму от внешней среды, помогает клетке сохранять форму. Стоит вспомнить, что в помимо мембраны еще есть и внешняя целлюлозная оболочка, которую называют клеточной стенкой. Она выполняет опорную функцию.

К мембранным органеллам относится ЭПС, лизосомы и митохондрии, а также лизосомы и пластиды. Их мембраны могут отличаться только по набору протеинов.

Если говорить о функциональной способности органелл, то некоторые из них способны синтезировать определенные вещества. Так, важные органоиды синтеза - митохондрии, в которых образуется АТФ. Рибосомы, пластиды (хлоропласты) и шероховатая эндоплазматическая сеть отвечают за синтез белков, гладкая ЭПС - за синтез липидов и углеводов.

Рассмотрим строение и функции органоидов более подробно.

Ядро

Данная органелла чрезвычайно важна, поскольку при ее удалении клетки перестают функционировать и погибают.

Ядро имеет двойную мембрану, в которой есть множество пор. При помощи них оно тесно связывается с эндоплазматической сетью и цитоплазмой. Данный органоид содержит хроматин - хромосомы, которые являются комплексом протеинов и ДНК. Учитывая это, можно сказать, что именно ядро является органеллой, которая отвечает за сохранение основного количества генома.

Жидкая часть ядра называется кариоплазмой. В ней содержатся продукты жизнедеятельности структур ядра. Наиболее плотная зона - ядрышко, в котором размещаются рибосомы, сложные белки и РНК, а также фосфаты калия, магния, цинка, железа и кальция. Ядрышко исчезает перед и формируется снова на последних этапах данного процесса.

Эндоплазматическая сеть (ретикулум)

ЭПС - одномембранный органоид. Он занимает половину объема клетки и состоит из канальцев и цистерн, которые связаны между собой, а также с цитоплазматической мембраной и внешней оболочкой ядра. Мембрана данного органоида имеет такую же структуру, что и плазмалема. Данная структура целостная и не открывается в цитоплазму.

Эндоплазматический ретикулум бывает гладким и гранулярным (шероховатым). На внутренней оболочке гранулярной ЭПС размещаются рибосомы, в которых проходит синтез протеинов. На поверхности гладкой эндоплазматической сети рибосомы отсутствуют, но здесь проходит синтез углеводов и жиров.

Все вещества, которые образуются в эндоплазматической сети, переносятся по системе канальцев и трубочек к местам назначения, где накапливаются и впоследствии используются в различных биохимических процессах.

Учитывая синтезирующую способность ЭПС, шероховатый ретикулум размещается в клетках, основная функция которых - образование протеинов, а гладкий - в клетках, синтезирующих углеводы и жиры. Кроме этого, в гладком ретикулуме накапливаются ионы кальция, которые нужны для нормального функционирования клеток или организма в целом.

Надо также отметить, что ЭПС является местом образования аппарата Гольджи.

Лизосомы, их функции

Лизосомы - это клеточные органоиды, которые представлены одномембранными мешочками округлой формы с гидролитическими и пищеварительными ферментами (протеазы, липазы и нуклеазы). Для содержимого лизосом характерна кислая среда. Мембраны данных образований изолируют их от цитоплазмы, предупреждая разрушение других структурных компонентов клеток. При высвобождении ферментов лизосомы в цитоплазму происходит саморазрушение клетки - автолиз.

Следует отметить, что ферменты первично синтезируются на шероховатой эндоплазматической сетке, после чего перемещаются в аппарат Гольджи. Здесь они проходят модификацию, упаковываются в мембранные пузырьки и начинают отделяться, становясь самостоятельными компонентами клетки - лизосомами, которые бывают первичными и вторичными.

Первичные лизосомы - структуры, которые отделяются от аппарата Гольджи, а вторичные (пищеварительные вакуоли) - это те, которые образуются вследствие слияния первичных лизосом и эндоцитозных вакуолей.

Учитывая такую структуру и организацию, можно выделить основные функции лизосом:

  • переваривание разных веществ внутри клетки;
  • уничтожение клеточных структур, которые не нужны;
  • участие в процессах реорганизации клеток.

Вакуоли

Вакуоли - это одномембранные органеллы сферической формы, которые являются резервуарами воды и растворенных в ней органических и неорганических соединений. В образовании данных структур участвует аппарат Гольджи и ЭПС.

В животной клетке вакуолей немного. Они мелкие и занимают не более 5% объема. Их основная роль - обеспечение транспорта веществ по всей клетке.

Вакуоли большие и занимают до 90% объема. В зрелой клетке есть только одна вакуоль, которая занимает центральное положение. Ее мембрану называют тонопластом, а содержимое - клеточным соком. Основные функции растительных вакуолей - обеспечение напряжения клеточной оболочки, накопление различных соединений и отходов жизнедеятельности клетки. Кроме того, эти органоиды растительной клетки поставляют воду, необходимую для процесса фотосинтеза.

Если говорить о составе клеточного сока, то в него входят следующие вещества:

  • запасные - органические кислоты, углеводы и протеины, отдельные аминокислоты;
  • соединения, которые образуются в процессе жизнедеятельности клеток и накапливаются в них (алкалоиды, дубильные вещества и фенолы);
  • фитонциды и фитогормоны;
  • пигменты, за счет которых плоды, корнеплоды и лепестки цветов окрашиваются в соответствующий цвет.

Комплекс Гольджи

Строение органоидов под названием «аппарат Гольджи» довольно простое. В клетках растений они выглядят как отдельные тельца с мембраной, в клетках животных они представлены цистернами, канальцами и пузырями. Структурная единица комплекса Гольджи - это диктиосома, которая представлена стопкой из 4-6 «цистерн» и мелких пузырьков, что отделяются от них и являются внутриклеточной транспортной системой, а также могут служить источником лизосом. Число диктиосом может колебаться от одной до нескольких сотен.

Комплекс Гольджи, как правило, размещается около ядра. В животных клетках - возле клеточного центра. Основными функциями этих органелл является следующее:

  • секреция и накопление протеинов, липидов и сахаридов;
  • модификация органических соединений, поступающих в комплекс Гольджи;
  • данный органоид является местом образования лизосом.

Следует отметить, что ЭПС, лизосомы, вакуоли, а также аппарат Гольджи вместе образуют канальцево-вакуолярную систему, которая разделяет клетку на отдельные участки с соответствующими функциями. Кроме того, данная система обеспечивает постоянное обновление мембран.

Митохондрии - энергетические станции клетки

Митохондрии - двумембранные органоиды палочковидной, шаровидной или нитевидной формы, которые синтезируют АТФ. Они имеют внешнюю гладкую поверхность и внутреннюю мембрану с многочисленными складками, которые называются кристами. Следует отметить, что число крист в митохондриях может меняться в зависимости от потребности клетки в энергии. Именно на внутренней мембране сосредоточены многочисленные ферментные комплексы, синтезирующие аденозинтрифосфат. Здесь энергия химических связей превращается в АТФ. Кроме того, в митохондриях проходит расщепление жирных кислот и углеводов с высвобождением энергии, которая накапливается и используется на процессы роста и синтеза.

Внутренняя среда данных органелл называется матриксом. Она содержит кольцевые ДНК и РНК, мелкие рибосомы. Интересно, что митохондрии - полуавтономные органоиды, поскольку зависят от функционирования клетки, но в то же время могут сохранять определенную самостоятельность. Так, они способны синтезировать собственные белки и ферменты, а также размножаться самостоятельно.

Считается, что митохондрии возникли при попадании в клетку-хозяина аэробных прокариотических организмов, что привело к образованию специфического симбиотического комплекса. Так, митохондриальная ДНК имеет такое же строение, как и ДНК современных бактерий, а синтез белков и в митохондриях, и в бактериях ингибируется одинаковыми антибиотиками.

Пластиды - органоиды растительной клетки

Пластиды являются достаточно крупными органеллами. Они присутствуют только в клетках растений и образуются из предшественников - пропластид, содержат ДНК. Эти органоиды играют важную роль в метаболизме и отделены от цитоплазмы двойной мембраной. Кроме этого, в них может образовываться упорядоченная система внутренних мембран.

Пластиды бывают трех типов:

Рибосомы

Что такое органоид под названием называют состоящие из двух фрагментов (малой и большой субъединицы). Их диаметр составляет около 20 нм. Они встречаются в клетках всех типов. Это органоиды животных и растительных клеток, бактерий. Образуются эти структуры в ядре, после чего переходят в цитоплазму, где размещаются свободно или прикрепляются к ЭПС. В зависимости от синтезирующих свойств рибосомы функционируют в одиночку или объединяются в комплексы, образуя полирибосомы. В данном случае эти немембранные органеллы связываются молекулой информационной РНК.

Рибосома содержит 4 молекулы р-РНК, которые составляют ее каркас, а также различные белки. Основная задача данного органоида - сбор полипептидной цепи, что является первой стадией синтеза протеинов. Те белки, которые образуются рибосомами эндоплазматического ретикулума, могут использоваться всем организмом. Протеины для потребностей отдельной клетки синтезируются рибосомами, которые размещаются в цитоплазме. Следует отметить, что рибосомы также встречаются в митохондриях и пластидах.

Цитоскелет клетки

Клеточный цитоскелет образуется микротрубочками и микрофиламентами. Микротрубочки представляют собой цилиндрические образования диаметром 24 нм. Их длина составляет 100 мкм-1 мм. Основной компонент - белок под названием тубулин. Он неспособен к сокращению и может разрушаться под действием колхицина. Микротрубочки располагаются в гиалоплазме и выполняют следующие функции:

  • создают эластичный, но в то же время прочный каркас клетки, который позволяет ей сохранять форму;
  • принимают участие в процессе распределения хромосом клетки;
  • обеспечивают перемещение органелл;
  • содержатся в клеточном центре, а также в жгутиках и ресничках.

Микрофиламенты - нити, которые размещаются под и состоят из белка актина или миозина. Они могут сокращаться, в результате чего идет перемещение цитоплазмы или выпячивание клеточной мембраны. Кроме того, данные компоненты принимают участие в образовании перетяжки при делении клетки.

Клеточный центр (центросома)

Данная органелла состоит из 2 центриолей и центросферы. Центриоль цилиндрической формы. Ее стенки образуются тремя микротрубочками, которые сливаются между собой посредством поперечных сшивок. Центриоли располагаются парами под прямым углом друг к другу. Следует отметить, что клетки высших растений лишены данных органоидов.

Основная роль клеточного центра - обеспечение равномерного распределения хромосом в ходе клеточного деления. Также он является центром организации цитоскелета.

Органеллы движения

К органоидам движения относят реснички, а также жгутики. Это миниатюрные выросты в виде волосков. Жгутик содержит 20 микротрубочек. Его основа размещается в цитоплазме и называется базальным тельцем. Длина жгутика составляет 100 мкм или более. Жгутики, которые имеют всего 10-20 мкм, называются ресничками. При скольжении микротрубочек реснички и жгутики способны колебаться, вызывая движение самой клетки. В цитоплазме могут содержаться сократительные фибриллы, которые называются миофибриллами - это органоиды животной клетки. Миофибриллы, как правило, размещаются в миоцитах - клетках мышечной ткани, а также в клетках сердца. Они состоят из более мелких волокон (протофибрилл).

Следует отметить, что пучки миофибрилл состоят из темных волокон - это анизотропные диски, а также светлых участков - это изотропные диски. Структурная единица миофибриллы - саркомер. Это участок между анизотропным и изотропным диском, который имеет актиновые и миозиновые нити. При их скольжении происходит сокращение саркомера, что приводит к движению всего мышечного волокна. При этом используется энергия АТФ и ионы кальция.

При помощи жгутиков движутся простейшие и сперматозоиды животных. Реснички являются органом движения инфузории-туфельки. У животных и человека они покрывают воздухоносные дыхательные пути и помогают избавляться от мелких твердых частиц, например, от пыли. Кроме этого, существуют еще псевдоножки, которые обеспечивают амебоидное движение и являются элементами многих одноклеточных и клеток животных (к примеру, лейкоцитов).

Большинство растений не могут перемещаться в пространстве. Их движения заключаются в росте, перемещениях листьев и изменениях потока цитоплазмы клеток.

Заключение

Несмотря на все разнообразие клеток, все они имеют сходную структуру и организацию. Строение и функции органоидов характеризуются идентичными свойствами, обеспечивая нормальное функционирование как отдельной клетки, так и всего организма.

Эту закономерность можно выразить следующим образом.

Таблица «Органоиды клетки эукариот»

Органоид

Растительная клетка

Животная клетка

Основные функции

хранение ДНК, транскрипция РНК и синтез протеинов

эндоплазматическая сетка

синтез протеинов, липидов и углеводов, накопление ионов кальция, образование комплекса Гольджи

митохондрии

синтез АТФ, собственных ферментов и белков

пластиды

участие в фотосинтезе, накопление крахмала, липидов, протеинов, каротиноидов

рибосомы

сбор полипептидной цепи (синтез белков)

микротрубочки и микрофиламенты

позволяют клетке сохранять определенную форму, являются составной частью клеточного центра, ресничек и жгутиков, обеспечивают перемещение органелл

лизосомы

переваривание веществ внутри клетки, уничтожение ее ненужных структур, участие в реорганизации клеток, обусловливают автолиз

большая центральная вакуоль

обеспечивает напряжение клеточной оболочки, накапливает питательные вещества и продукты жизнедеятельности клетки, фитонциды и фитогормоны, а также пигменты, является резервуаром воды

комплекс Гольджи

секретирует и накапливает протеины, липиды и углеводы, модифицирует питательные вещества, которые поступают в клетку, отвечает за образование лизосом

клеточный центр

есть, кроме высших растений

является центром организации цитоскелета, обеспечивает равномерное расхождение хромосом при делении клеток

миофибриллы

обеспечивают сокращение мышечной ткани

Если сделать выводы, то можно сказать, что существуют незначительные различия между животной и растительной клеткой. При этом функциональные особенности и строение органоидов (таблица, указанная выше, подтверждает это) имеет общий принцип организации. Клетка функционирует как слаженная и целостная система. При этом функции органоидов взаимосвязаны и направлены на оптимальную работу и поддержание жизнедеятельности клетки.

Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».

Строение клетки

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части - органоиды. Узнать об их особенностях Вы сможете далее.

Ядро

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Функциями внутреннего содержимого ядра являются синтезирование белка и РНК. Из них образуются особые органеллы - рибосомы.

Рибосомы

Располагаются вокруг эндоплазматической сети, при этом делая её поверхность шероховатой. Иногда рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

ТОП-4 статьи которые читают вместе с этой

Эндоплазматическая сеть

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и внутренняя транспортировка веществ. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Аппарат Гольджи

Чаще всего располагается вблизи ядра. В его функции входит преобразование белка и образование лизосом. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма, и позднее выведутся из неё.

Лизосомы представлены в виде пищеварительных ферментов, которые заключены с помощью мембраны в пузырьки и разносятся по цитоплазме.

Митохондрии

Эти органоиды покрыты двойной мембраной:

  • гладкая - наружная оболочка;
  • кристы - внутренний слой, имеющий складки и выступы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание и преобразование питательных веществ в энергию. В кристах находится фермент, который синтезирует из питательных веществ молекулы АТФ. Это вещество является универсальным источником энергии для всевозможных процессов.

Клеточная стенка отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя липидов, между которыми находятся белки.

Сравнительная характеристика

Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:

  • клеточная стенка у растительного организма имеет плотное строение за счёт наличия целлюлозы;
  • у растительной клетки есть пластиды и вакуоли;
  • животная клетка имеет центриоли, которые имеют значение в процессе деления;
  • наружная мембрана животного организма гибкая и может приобретать различные формы.

Рис. 3. Схема строения растительной и животной клетки.

Подытожить знания про основные части клеточного организма поможет следующая таблица:

Таблица «Строение клетки»

Органоид

Характеристика

Функции

Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.

Транскрипция и хранение ДНК.

Плазматическая мембрана

Состоит из двух слоёв липидов, которые пронизаны белками.

Защищает содержимое, обеспечивает межклеточные обменные процессы, реагирует на раздражитель.

Цитоплазма

Полужидкая масса, содержащая липиды, белки, полисахариды и пр.

Объединение и взаимодействие органелл.

Мембранные мешочки двух типов (гладкие и шероховатые)

Синтез и транспортировка белков, липидов, стероидов.

Аппарат Гольджи

Располагается возле ядра в виде пузырьков или мембранных мешочков.

Образует лизосомы, выводит секреции.

Рибосомы

Имеют белок и РНК.

Образуют белок.

Лизосомы

В виде мешочка, внутри которого находятся ферменты.

Переваривание питательных веществ и отмерших частей.

Митохондрии

Снаружи покрыты мембраной, содержат кристы и многочисленные ферменты.

Образование АТФ и белка.

Пластиды

Покрыты мембраной. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.

Фотосинтез и запас веществ.

Мешочки с клеточным соком.

Регулируют давление и сохраняют питательные вещества.

Центриоли

Имеет ДНК, РНК, белки, липиды, углеводы.

Участвует в процессе деления, образуя веретено деления.

Что мы узнали?

Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи она покрыта плотной оболочкой, которая защищает внутреннее содержимое от воздействия внешней среды. Внутри находится ядро, регулирующее все происходящие процессы и хранящее генетический код. Вокруг ядра расположена цитоплазма с органоидами, каждый из которых имеет свои особенности и характеристику.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 1282.