Про психологию. Учения и методики

Исследовательская работа "исследование особенностей фрактальных моделей". Исследовательская работа «Путешествие в мир фракталов Фракталы в реальном мире объект исследования

Христолюбова Ангелина

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №2 г. Сальска

«Кафедра естественно-математических дисциплин»

Исследовательская работа

тема: « Фракталы в нашей жизни ».

Христолюбова Ангелина Михайловна,

ученица 8 «Б» класса.

Руководитель:

Кузьминчук Елена Сергеевна,

учитель математики и информатики.

г. Сальск

2015 г.

Введение

Классификация фракталов

Применение фракталов

Заключение.

Список литературы.

Приложения.

Введение

Блох больших кусают блошки

Блошек тех – малютки-крошки,

Как говорят, ad infinitum.

Джонатан Свифт

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий - фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь - фрактал.

Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть.

Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".

Все, что существует в реальном мире, является фракталом – это и есть наша гипотеза , а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования :

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Дать представление о фракталах, встречающихся в нашей жизни.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования , в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.

История появления понятия «фрактал»

Первые идеи фрактальной геометрии возникли в 19 веке.

Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора (приложения 1, 2).

Джузеппе Пеано (Giuseppe Peano; 1858-1932) - итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве (приложения 3, 4).

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (приложение 5).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача - понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность - графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров – завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (приложение 6).

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Классификация фракталов

Фракталы делятся на группы. Самые большие группы это:

Геометрические фракталы;

Алгебраические фракталы;

Применение фракталов

Заключение.

Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.

Даже сами учёные испытывают почти детский восторг, наблюдая за быстрым развитием этого нового языка - языка фракталов.

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа - лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

В результате проведенного исследования удалось выяснить, что встречались с фракталами 42,5% опрошенных, знают, что такое фрактал 15% опрошенных, хотели бы узнать, что такое фрактал 62,5% опрошенных обучающихся и учителей МБОУ гимназии №2 г. Сальска.

После того как были открыты фракталы, для многих стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы.

Нам удалось показать, все, что существует в реальном мире, является фракталом. Мы убедились, что тому, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Мы надеемся, что после знакомства с нашей работой, вы, как и мы, убедитесь в том, что математика прекрасна и удивительна.

Список литературы.

  1. Красота математических поверхностей. - М.: Куб, 2005;
  2. Леонтьев В.П., Новейшая энциклопедия Интернет. - М.: ОЛМА-ПРЕСС, 2003;
  3. Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002;
  4. Маршак С.Я. , Изд.: Художественная литература.1985;
  5. Шляхтина С.,«В мире фрактальной графики». - СПб., Компьютер Price, 2005;
  6. Газета «Информатика», № 24, 2008;
  7. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993;
  8. Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории;
  9. Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.;
  10. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.;
  11. http://elementy.ru;
  12. http://ru.wikipedia.org;
  13. http://www.deviantart.com;
  14. http://fractals.nsu.ru;
  15. http://fraktals.ucoz.ru;
  16. http://www.bsu.burnet.ru/library/berson/index.html;
  17. http://www.uni-dubna.ru/kafedr/mazny/page11.htm;
  18. http://robots.ural.net/fractals/;
  19. http://fract.narod.ru;
  20. http://sakva.narod.ru/fractals.htm#History;
  21. http://oco.newmail.ru/fractals.htm;
  22. http://www.ghcube.com/fractals;
  23. http://www.fractalus.com/galleries/.

Мартынов Даниил

Руководитель проекта:

Мартынова Людмила Юрьевна

Учреждение:

МОУ "Криушинская СОШ"

В процессе исследовательской работы по математике "Фракталы вокруг нас" учеником 8 класса была поставлена цель показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».


В исследовательской работе по математике "Фракталы вокруг нас" автор строит геометрический фрактал "Звезда" в рамках проекта и дает рекомендации по практическому применению созданного фрактала, пытается найти связь между фракталами и треугольниками Паскаля в процессе математического исследования.

В предложенном проекте по математике "Фракталы вокруг нас" автор приходит к умозаключению, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы. Методы обработки изображений и распознавания образов, использующие новые понятия, дают возможность исследователям применить этот математический аппарат для количественного описания огромного количества природных объектов и структур.

Введение
1. Обоснование и построение геометрического фрактала "Звезда".
2. Нахождение связи между фракталами и треугольниками Паскаля.
3. Рекомендации по практическому применению созданного фрактала.
Заключение

Введение

Многие из моих одноклассников считают, что математика – точная и скучная наука, задачи, уравнения, графики, формулы…. Что здесь может быть интересного? Геометрия 21 века. Холодная, сложная, не интересная…


"Почему ее так называют? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности" Бенуа Мандельброт.

Своей исследовательской работой я постарался опровергнуть выше сказанное. Это стало возможно после открытия фракталов - самоподобных фигур, обладающих рядом интересных свойств, которые и позволили сравнивать фракталы с объектами природы.

Гипотеза – «Всё, что существует в реальном мире, является фракталом ».

Цель - показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».

Объект исследования - фракталы в математике и в реальном мире.

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Установить взаимосвязь между треугольником Паскаля, литературными произведениями.
  4. Придумать и создать собственный фрактал, составить программу для построения графического образа геометрического фрактала «Звезда ».
  5. Рассмотреть возможности практического применения созданного фрактала.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы включает в себя введение, две главы, заключение, список использованной литературы, приложения.

Во введении обоснована актуальность и новизна темы исследования, определены проблема, предмет, цель, задачи, этапы работы, теоретическая и практическая значимость работы.

В первой главе раскрывается вопрос об истории возникновения понятия фрактала, классификация фракталов, применение фракталов.

Во второй главе исследуется и доказывается, что созданная нами геометрическая фигура «Звезда » является фракталом, изменяя параметры созданного фрактала, мы получили целую галерею прекрасных орнаментов, которые могут быть использованы для практического применения: в производстве тканей, отделочных материалов, в валеологии.

ИССЛЕДОВАНИЕ МИРА ФРАКТАЛОВ

Васильева Марина Владимировна

студент 3 курса, факультет информатики СГАУ им. академика С.П. Королева, РФ, г. Самара

Тишин Владимир Викторович

научный руководитель, доцент, кафедра прикладной математики СГАУ

им. академика С.П. Королева, РФ, г. Самара

Введение

Мир фракталов - это удивительный, огромный и многообразный мир. Он очаровывает, покоряет, однако иногда в нем трудно разобраться. Фрактальные рисунки - это пик вдохновения мастера на пути к совершенному единству математики, информатики и искусства. Недавно геометрические модели природных объектов изображались с помощью комбинаций простых фигур, таких как прямые, треугольники, окружности, сферы, многогранники. Но с помощью набора этих известных фигур нелегко описать более сложные природные объекты, например, пористые материалы, формы облаков, кроны деревьев. Новые компьютерные средства, без которых не может обойтись современная наука, выводят математику на чрезвычайно высокий уровень. Когда изучаешь фракталы, понимаешь, что весьма затруднительно провести грань между математикой и информатикой, потому что они тесно переплелись, стремясь открыть неповторимые, уникальные модели. Фракталы приближают нас к пониманию некоторых природных процессов и явлений. Поэтому тема фракталов меня заинтересовала.

Передо мной возникла проблема: как построить фрактал, используя математические формулы.

Гипотеза: если изучить закономерности построения фракталов, то их можно смоделировать.

Методы исследования: анализ, синтез, моделирование.

Цель: построить фракталы с помощью компьютерных технологий.

Задачи: исследовать фракталы; изучить историю возникновения и применения фракталов.

Актуальность: я считаю - за фракталами будущее, они лучше передают наш изменчивый и сложный мир. Фракталы помогают изучить различные процессы и явления.

Результат исследования: разработка алгоритма построения фракталов.

Теоретическая и практическая значимость: использование алгоритма построения фракталов для изучения их свойств.

Понятие «фрактал»

Понятия «фрактал» и «фрактальная геометрия» появились в 70-80-х годах XX века. Они устойчиво закрепились в употреблении математиков и программистов. Слово «фрактал», что в переводе с латинского означает разбитый, поделённый на части, было предложено Бенуа Мандельбротом, американским математиком, в 1975 году, с целью обозначения нерегулярных самоподобных структур. Мандельброт дал такое определение: «фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Следует отметить, что свойство самоподобности отражает главную особенность природных объектов.

С точки зрения математики, фрактал - это, в первую очередь, множество дробной размерности. Известно, что размерность отрезка равна 1, квадрата - 2, куба и параллелепипеда - 3. Дробная размерность - это основное свойство фракталов.

С выходом книги Мандельброта «Фрактальная геометрия природы» в 1977 году связывают рождение фрактальной геометрии. В ней применены научные результаты учёных, среди них Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф, работавших в период 1875-1925 гг. в той же области. И только в наше время удалось объединить в единую систему эти работы.

Фрактальная геометрия является революцией в математике и математическом описании природы. Сам Бенуа Мандельброт, первооткрыватель фрактальной геометрии, пишет об этом так: «Облака - это не сферы, горы - это не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах бесконечно».

Рассматривая фрактальные объекты в различном масштабе, можно легко обнаружить одни и те же основные элементы. Закономерности, которые повторяются, определяют дробную размерность необычной геометрической фигуры.

Классификация фракталов

Удобно прибегнуть к их общепринятой классификации, чтобы представить все многообразие фракталов. Фракталы делятся на геометрические, алгебраические и стохастические.

К геометрическим фракталам относятся: кривая Коха, кривая дракона, кривая Леви, кривая Минковского, треугольник Серпинского, ковер Серпинского, множество Кантора и дерево Пифагора.

Такого класса фракталы самые наглядные, так как в них сразу видна самоподобность. В двухмерном случае их можно получить с помощью ломаной, которая называется генератором, в трехмерном случае - поверхности. Каждый из отрезков, составляющих ломаную, за один шаг алгоритма, заменяется на ломаную-генератор, в соответствующем масштабе. Таким образом, получается фрактальная кривая в результате бесконечного повторения этой процедуры. При видимой сложности полученной кривой, её общий вид задается только формой генератора.

Алгебраические фракталы: множество Мандельброта, множество Жюлиа, бассейны Ньютона, биоморфы.

Алгебраические фракталы являются самыми многочисленными. Для построения алгебраических фракталов используются итерации нелинейных отображений, которые задаются простыми алгебраическими формулами. Двухмерные процессы считаются наиболее изученными. Следует отметить, что нелинейные динамические системы имеют несколько устойчивых состояний. От начального состояния зависит то состояние, в котором оказалась динамическая система после некоторого числа итераций. Возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры стала для математиков неожиданностью.

К стохастическим фракталам относятся плазма и рандомизированный фрактал.

Термин «стохастичность» происходит от греческого слова и обозначает «предположение».

Как бы ни была похожа на границу берега, кривая Коха не может быть в качестве её модели, потому что она всюду одинакова, самоподобна и, можно сказать, слишком «правильна». Все природные объекты создаются по капризу природы, в этом процессе всегда есть случайность. Стохастическими фракталами называются такие фракталы, при построении которых случайным образом в итеративной системе изменяются какие-либо параметры. При этом получаются очень похожие на природные объекты такие, как несимметричные деревья, изрезанные береговые линии. При моделировании рельефа местности и поверхности моря используются двумерные стохастические фракталы.

Применение фракталов

Главным применением фракталов является современная компьютерная графика. С их помощью можно создавать плоские множества и поверхности очень сложной формы, изменяя при этом параметры в заданных уравнениях.

Фрактальная геометрия является незаменимой при генерации искусственных облаков, горных ландшафтов, морей. Учёные нашли простой способ изображения сложных объектов, у которых образы напоминают природные формы.

Наиболее полезным использованием фракталов в компьютерной науке считается фрактальное сжатие данных. Основой такого вида сжатия служит то, что фрактальной геометрией достаточно хорошо описывается реальный мир. Картинки при этом сжимаются даже намного лучше, чем с помощью обычных методов. При увеличении картинки не наблюдается эффекта пикселизации, в этом заключается еще одно преимущество фрактального сжатия. При фрактальном сжатии после увеличения картинка часто выглядит даже лучше, чем до него.

Следует отметить, что фракталы применяются в шифрование данных с помощью фрактальных алгоритмов.

Для передачи данных на расстояние используются антенны, которые имеют фрактальные формы, что сильно уменьшает их вес и размеры.

Также с помощью фракталов можно моделировать сложные физические процессы, например, языки пламени. Фрактальные формы достаточно хорошо передают пористые материалы, имеющие очень сложную геометрическую структуру. Такие знания используются в науке о нефти.

Теория фракталов применяется и при изучении структуры Вселенной.

В биологии можно рассмотреть такие примеры, как биосенсорные взаимодействия и биения сердца, моделирование хаотических процессов. Фракталы используют в своих произведениях и художники, и дизайнера, и композиторы.

Алгоритмы построения фракталов

Рассмотрим множество Мандельброта. В математике множество Мандельброта - это фрактал, который определяется как множество точек на комплексной плоскости, итеративная последовательность не уходит в бесконечность и задана формулами z 0 =0, Z n +1 =Z n 2 +M. Чтобы построить данную последовательность точек, т. е. фрактал, перейдем от комплексной формы записи с помощью преобразований к удобным формулам для построения.

Если выражение Z n +1 =Z n 2 +M переформулировать в виде итеративной последовательности значений координат комплексной плоскости x и y, то есть, приняв Z = X + iY и М = p + iq (где i - мнимая единица), то получим алгоритм с формулами (1): X n +1 =X n 2 –Y n 2 +p; Y n +1 =2X n Y n +q, с параметрами p = – 0,5219;

Сначала полагаем X n = 0; Y n = 0, и по формулам (1) получаем на первом шаге вычислений: X n +1 =0 2 –0 2 –0,5219= – 0,5219; Y n +1 =2·0·0+0,4999.

Теперь полагаем X n = X n +1 = – 0,5219; Y n = Y n +1 = 0,4999, и по формулам (1) получаем на втором шаге: X n +1 = (–0,5219) 2 – (0,4999) 2 – 0,5219 = – 0,4994...;

Y n +1 = 2·(–0,5219)·(0,4999) + 0,4999 = – 0,0218....

Затем полагаем X n = X n +1 = – 0,4994...; Y n = Y n +1 = –0,0218, и опять по формулам (1) продолжаем дальше. То есть на каждом последующем шаге вычислений (итераций) предыдущие значения X n +1 и Y n +1 надо подставлять в формулы (1) в качестве новых значение X n и Y n .

В программе « Microsoft Excel» можно сделать 32000 подобных «шагов»-вычислений, а затем построить («точками») график функции Y n +1 = f(X n +1), который и будет похож на «пылающее солнце». Более того, меняя числовые значения параметров p и q, на том же графике можно увидеть и другие объекты; например, при p = – 0,5; q = 0,4999 вместо «солнца» получится «спиральная галактика».

Представлю алгоритм, который я составила, для построения в программе «Microsoft Excel» фракталов Мандельброта «пылающее солнце» и «спиральная галактика». На практике для достижения приемлемой точности достаточно 100 итераций.

Таблица 1 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «пылающее солнце» (для 100 итераций)

6.Записать в ячейку H1 переменную Y n +1 . 7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0.

11.Ввести в ячейку D2 значение -0,5219.

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Таблица 2 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «спиральная галактика» (для 100 итераций)

1.Записать в ячейку А1 переменную X n

2.Записать в ячейку В1 переменную Y n .

3.Записать в ячейку D1 параметр р.

4.Записать в ячейку E1 параметр q.

5.Записать в ячейку G1 переменную X n +1 .

6.Записать в ячейку H1 переменную Y n +1 .

7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0. .

9.Ввести в ячейку А3 формулу =G2.

10.Ввести в ячейку В3 формулу =H2.

11.Ввести в ячейку D2 значение -0,5.

12.Ввести в ячейку E2 значение 0,4999.

13.Ввести в ячейку G2 формулу =A2^2-B2^2+$D$2

14.Ввести в ячейку H2 формулу =2*A2*B2+$E$2

15.Растянуть ячейку А3 за правый нижний уголок до A101.

16.Растянуть ячейку В3 за правый нижний уголок до B101.

17.Растянуть ячейку G2 за правый нижний уголок до G101.

18.Растянуть ячейку H2 за правый нижний уголок до H101.

19.Выделить область значений от G2 до H101.

20.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал «кривая Гильберта», заданный формулой (2):

y (x ) = (cos 0,5 x ⋅ cos 200x + |x | 0,5 − 0,7)(4 − x 2) 0,01 . Найдем область допустих значений данного выражения. Под арифметическим квадратным корнем находится функция cos(x), значит, cos(x) ≥ 0.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала «кривая Гильберта» по данной формуле (2) в допустимой области значений, выбрав шаг равный 0,01.

Таблица 3 .

Алгоритм построения в программе “Microsoft Excel” фрактала «кривая Гильберта»

1.Записать в ячейку A1 переменную х.

2.Записать в ячейку B1 переменную у.

3.Записать в ячейку A2 значение -π/2, согласно области допустимых значений XЄ[-π/2; π/2],

4.Ввести в ячейку A3 формулу =A2+0,01.

5.Растянуть ячейку А3 за правый нижний уголок до ячейки А316 (до значения 1,57).

6.Ввести в ячейку В2 формулу

=((КОРЕНЬ(COS(A2)))*COS(200*A2)+КОРЕНЬ(ABS(A2))-0,7)*(4-A2*A2)^0,01

7.Растянуть ячейку В2 за правый нижний уголок до ячейки В316.

8.Выделить область значений от А2 до В316.

9.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал Мандельброта «кривая Дракона», заданный системами уравнений (3) и (4) соответственно:

Сначала полагаем X n = 0; Y n = 0. Задаем случайным образом параметр m, который меняется от 0 до 1. Если m > 0,5, то применяем систему уравнений (3) для построения фрактала, иначе - (4). Каждое новое значение получается из предыдущего в зависимости от случайного числа.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона».

Таблица 4 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона»

1. Записать в ячейку А1 номер n.

2. Записать в ячейку В1 случайную величину m.

3. В ячейку С1 записать х.

4. В ячейку D1 записать у.

5. В ячейку А2 записать 1.

6. В ячейку А3 ввести формулу =A2+1

7. Растянуть А3 до ячейки А 11363

8. В ячейку В2 записать функцию случайного числа =СЛЧИС()

9. Растянуть ячейку В2 до В 11363

10. Ввести в ячейку С2 значение 0

11. Ввести в ячейку С3 формулу =ЕСЛИ(B3>0,5;-0,4*C2-1;0,76*C2-0,4*D2)

12. Растянуть ячейку С3 до ячейки С 11363

13. Ввести в ячейку D2 значение 0.

14. Ввести в ячейку D3 формулу =ЕСЛИ(B3>0,5;-0,4*D2+0,1;0,4*C2+0,76*D2)

15. Растянуть ячейку D3 до ячейки D11363

16. Выделить ячейки от С2 до D11363

17. Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная

Заключение

Компьютер можно характеризовать как новое средство познания. Благодаря ему, можно увидеть связи и значения, которые до сих пор были скрыты от нас.

Выполняя исследовательскую работу, я убедилась в том, что область применения фракталов чрезвычайно велика. Их помощь необходима, например, когда требуется задать линии и поверхности очень сложной формы с помощью нескольких коэффициентов.

Можно сказать, что фактически найден способ легкого, удобного представления сложных неевклидовых объектов, образы которых похожи на природные.

Фракталы позволяют посмотреть на математику совсем с другой стороны, открывают нам глаза. Казалось бы, производятся обычные расчёты с обычными цифрами, однако это даёт нам по-своему уникальные, неповторимые результаты, которые позволяют почувствовать себя творцом природы. Фракталы дают понять, что математика - это тоже наука о прекрасном.

Список литературы:

1.Бенуа Мандельброта. «The Fractal Geometry of Nature», 1977.

2.Мандельброт Б. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002. - 656 с.

3.Морозов А.Д. Введение в теорию фракталов. Москва-Ижевск: Институт компьютерных исследований, 2002. - 160 с.

4.О фракталах. [Электронный ресурс] - Режим доступа. - URL: http://elementy.ru/posters/fractals

5.Перерва Л.М., Юдин В.В. П 27 Фрактальное моделирование: учебное пособие / под общ. ред. В.Н. Гряника. Владивосток: Изд-во ВГУЭС, 2007. - 186 с.

Министерство образования и науки Республики Казахстан

Карагандинский Государственный Технический Университет

Кафедра ____САПР______

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

По дисциплине: "Прикладная теория систем"

Тема: "Фракталы"

Руководитель

Разветвления трубочек трахей, листья на деревьях, вены в руке, река, бурлящая и изгибающаяся, рынок ценных бумаг - это все фракталы. От представителей древних цивилизаций до Майкла Джексона, ученые, математики и артисты, как и все остальные обитатели этой планеты, были зачарованы фракталами и применяли из в своей работе.

Программисты и специалисты в области компьютерной техники так же без ума от фракталов, так как фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами на простых домашних компьютерах. Открытие фракталов было открытием новой эстетики искусства, науки и математики, а так же революцией в человеческом восприятии мира.

2. Теоретическая часть

2.1 Понятие "фрактал"

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature. В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

2.2 Применение фракталов

Компьютерные системы.

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

Механика жидкостей.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.

При помощи фракталов также можно смоделировать языки пламени.

Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

Телекоммуникации.

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

Физика поверхностей.

Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Медицина.

1. Биосенсорные взаимодействия

2. Биения сердца

Биология.

Моделирование хаотических процессов, в частности при описании моделей популяций.

2.3 Теория хаоса

Теория хаоса - это учение о сложных нелинейных динамических системах. Ниже рассматривается истинное положение вещей, как ответ многим ошибочным представлениям об этой области науки.

2.3.1 Введение в теорию хаоса

Что такое теория хаоса?

Формально, теория хаоса определяется как учение о сложных нелинейных динамических системах. Под термином сложные это и понимается, а под термином нелинейные понимается рекурсия и алгоритмы из высшей математики, и, наконец, динамические - означает непостоянные и непериодические. Таким образом, теория хаоса - это учение о постоянно изменяющихся сложных системах, основанное не математических концепциях рекурсии, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему.

2.3.2 Теория хаоса о беспорядке

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Рисунок 1. Аттрактор Лоренца.


Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

2.3.3 Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать, что же в них хорошего. Итак что хорошего в теории хаоса?

Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:

1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

2.3.4 Броуновское движение и его применение

Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.

Рисунок 2. Частотная диаграмма.

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя. Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера.

Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато. Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

Рисунок 3. Рельеф.

2.4 Интеграция детерминированных фракталов и хаос

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора (Рисунок 4). Результат напоминает те старые детсадовские рисунки… Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Рисунок 4. Дерево Пифагора

Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.

Рисунок 5.

Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (слева) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!

Рисунок 6.

Может быть округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали!

Рисунок 7.

Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные Броуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до 24 разрядов. На этот раз, результат - приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева.


Рисунок 8.

2.5 Виды фракталов

Решётка Серпинского.

Это один из фракталов, с которыми экспериментировал Мандельброт, когда разрабатывал концепции фрактальных размерностей и итераций. Треугольники, сформированные соединением средних точек большего треугольника вырезаны из главного треугольника, образовывая треугольник, с большим количеством дырочек. В этом случае инициатор - большой треугольник а шаблон - операция вырезания треугольников, подобных большему. Так же можно получить и трехмерную версию треугольника, используя обыкновенный тетраэдр и вырезая маленькие тетраэдры. Размерность такого фрактала ln3/ln2 = 1.584962501.

Чтобы получить ковер Серпинского, возьмем квадрат, разделим его на девять квадратов, а средний вырежем. То же сделаем и с остальными, меньшими квадратами. В конце концов образуется плоская фрактальная сетка, не имеющая площади, но с бесконечными связями. В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения.


Рисунок 9. Решётка Серпинского.

Рисунок 10. Губка Серпинского.

Треугольник Серпинского.

Не перепутайте этот фрактал с решеткой Серпинского. Это два абсолютно разных объекта. В этом фрактале, инициатор и генератор одинаковы. При каждой итерации, добавляется уменьшенная копия инициатора к каждому углу генератора и так далее. Если при создании этого фрактала произвести бесконечное число итераций, он бы занял всю плоскость, не оставив ни одной дырочки. Поэтому его фрактальная размерность ln9/ln3 = 2.0.

Рисунок 11. Треугольник Серпинского.

Кривая Коха.

Кривая Коха один из самых типичных детерминированных фракталов. Она была изобретена в девятнадцатом веке немецким математиком по имени Хельге фон Кох, который, изучая работы Георга Контора и Карла Вейерштрассе, натолкнулся на описания некоторых странных кривых с необычным поведением. Инициатор - прямая линия. Генератор - равносторонний треугольник, стороны которого равны трети длины большего отрезка. Эти треугольники добавляются к середине каждого сегмента снова и снова. В своем исследовании, Мандельброт много экспериментировал с кривыми Коха, и получил фигуры такие как Острова Коха, Кресты Коха, Снежинки Коха и даже трехмерные представления кривой Коха, используя тетраэдр и прибавляя меньшие по размерам тетраэдры к каждой его грани. Кривая Коха имеет размерность ln4/ln3 = 1.261859507.

Рисунок 12. Кривая Коха.

Фрактал Мандельброта.

Это НЕ множество Мандельброта, которое можно достаточно часто видеть. Множество Мандельброта основано на нелинейных уравнениях и является комплексным фракталом. Это тоже вариант кривой Коха несмотря на то, что этот объект не похож на нее. Инициатор и генератор так же отличны от использованных для создания фракталов, основанных на принципе кривой Коха, но идея остается той же. Вместо того, чтобы присоединять равносторонние треугольники к отрезку кривой, квадраты присоединяются к квадрату. Благодаря тому, что этот фрактал занимает точно половину отведенного пространства при каждой итерации, он имеет простую фрактальную размерность 3/2 = 1.5


Рисунок 13. Фрактал Мандельброта.

Кривая Дракона.

Изобретенная итальянским математиком Джузеппе Пеано, Кривая Дракона или Взмах Дракона, как он назвал его, очень похож на колбасу Минковского. Использован более простой инициатор, а генератор тот же самый. Мандельброт назвал этот фрактал Река Двойного Дракона. Его фрактальная размерность приблизительно равна 1.5236.

Рисунок 14. Дракон Джузеппе Пеано.

Множество Мандельброта.

Множества Мандельброта и Жюлиа, вероятно, два наиболее распространенных среди сложных фракталов. Их можно найти во многих научных журналах, обложках книг, открытках, и в компьютерных хранителях экрана. Множество Мандельброта, которое было построено Бенуа Мандельбротом, наверное первая ассоциация, возникающая у людей, когда они слышат слово фрактал. Этот фрактал, напоминающий чесальную машину с прикрепленными к ней пылающими древовидными и круглыми областями, генерируется простой формулой


Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число.

Множество Мандельброта, которое чаще всего можно увидеть - это множество Мандельброта 2й степени, то есть а=2. Тот факт, что множество Мандельброта не только Zn+1=ZnІ+C, а фрактал, показатель в формуле которого может быть любым положительным числом ввел в заблуждение многих. На этой странице вы видите пример множества Мандельброта для различных значений показателя а.

Также популярен процесс Z=Z*tg (Z+C). Благодаря включению функции тангенса, получается множество Мандельброта, окруженное областью, напоминающей яблоко. При использовании функции косинуса, получаются эффекты воздушных пузырьков. Короче говоря, существует бесконечное количество способов настройки множества Мандельброта для получения различных красивых картинок.

Рисунок 15. Множество Мандельброта.

Рисунок 16. Множество Мандельброта при а=3,5.

Множество Жюлиа.

Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество. Первый вопрос, возникающий после визуального знакомства с множествами Мандельброта и Жюлиа это “если оба фрактала сгенерированы по одной формуле, почему они такие разные? ” Сначала посмотрите на картинки множества Жюлиа. Достаточно странно, но существуют разные типы множеств Жюлиа. При рисовании фрактала с использованием различных начальных точек (чтобы начать процесс итераций), генерируются различные изображения. Это применимо только ко множеству Жюлиа.

Хотя это нельзя увидеть на картинке, фрактал Мандельброта - это, на самом деле, множество фракталов Жюлиа, соединенных вместе. Каждая точка (или координата) множества Мандельброта соответствует фракталу Жюлиа. Множества Жюлиа можно сгенерировать используя эти точки в качестве начальных значений в уравнении Z=ZІ+C. Но это не значит, что если выбрать точку на фрактале Мандельброта и увеличить ее, можно получить фрактал Жюлиа. Эти две точки идентичны, но только в математическом смысле. Если взять эту точку и просчитать ее по данной формуле, можно получить фрактал Жюлиа, соответствующий определенной точке фрактала Мандельброта.

Рисунок 17. Множество Жюлиа.


Дерево Фейгенбаума.

Логистическое уравнение - это формула, над которой, в основном, работал Митчелл Фейгенбаум при создании своей теории о фракталах. Эта формула должна описывать динамику развития популяции:

f (x) = (1 - x) rx

Простейшая модель - это пропорциональное соотношение численности с прошлым годом. Допустим в прошлом году у нас было x животных. В этом году их должно быть rx животных. Но это не выполняется в реальных условиях. Лучшее соответствие с реальностью получится если добавить фактор, зависящий от того какой потенциал существует у популяции для дальнейшего развития, и пусть x - коэффициент полноты, который меняется от 0 до 1. Потом добавляется фактор 1 - x, так что территория почти полностью заполнена, популяция не возрастет выше верхнего предела.

Расширяя логистическое выражение, получаем:

f (x) = аx - ах2

Формула, использующаяся в программе LT Bifurcator для объяснения сущности фрактала Фейгенбаума - (1 + r) x - rx2 не сильно отличается от формулы, приведенной выше. В принципе, для изучения теории можно было использовать любую формулу, например самую простую из формул данного вида - xІ - r. Единственными различиями являются различия в координатах окон на картинке и несколько измененный внешний вид изображения.


Рисунок 18. Дерево Фейгенбаума.

2.6 Дерево Фейгенбаума и Множество Мандельброта

Если вы когда-либо видели формулу множетсва Мандельброта z=z2 + x, вы могли бы заметить схожесть между этой формулой и самой простой из формул для построения дерева Фейгенбаума x2 - r. И это действительно так. Сходство существует. Но фейгенбаумово дерево растет в другую сторону. Измените формулу Фейгенбаума на x2 + r и вы увидите сходство. Что касается множества Мандельброта, вам нужно смотреть вдоль горизонтальной оси, так как это единственная позиция в которой комплексная часть числа Мандельброта равна нулю. Вы увидите, что основное тело фигуры Мандельброта находится там, где функция в дереве Фейгенбаума принимает лишь одно значение. Когда происходит первое разделение линии (бифуркация) появляется новое тело на фигуре Мандельброта и т.д. Обратите также внимание на то, что когда в дереве открывается главное окно, на фигуре Мандельброта появляется дочернее тело.


Рисунок 19. Дерево Фейгенбаума и Множество Мандельброта.

3. Постановка задачи

Необходимо спроектировать и разработать программный продукт, при помощи которого возможно наглядно посмотреть изображения фрактальной графики. Программа должна позволять раскрыть сущность фрактала - многократное самоповторение (всего изображения или определённой его части). Интерфейс должен быть максимально понятным. Скорость работы должна быть такой, чтобы сбалансировать производительность и качество, т.е. при данной скорости прорисовывается достаточно наглядное изображение. Необходима так же возможность сохранения фрактального изображения. Программа должна быть интуитивно понятной и "не отталкивать при первом взгляде". Возможностями программы должны быть доступны прорисовки не менее десяти алгебраических и не менее двух геометрических фракталов.

Решение.

Решением данной задачи является программный продукт при помощи которого можно просмотреть по несколько образцов алгебраической и геометрической фрактальной графики. Программа должна иметь встроенное увеличение (многократное), пропорциональное истинному размеру изображения. Интерфейс необходим светлый, приятный, возможно в тонах WindowsXP. Нам, например, подойдёт использование градиентной заливки самой формы. Учитывая то, что человек не любит долгие ожидания программа не использует большой размер холста, однако и при данном размере удаётся рассмотреть все достоинства фрактальной графики. Программа использует стандартные возможности сохранения графического изображения в формате *. bmpи не может загружать в себя графические изображения этого формата, т.к эта программа не для просмотра, а для генерации изображений. В программе использованы небесные цвета, она имеет дружественный интерфейс и проста в обращении. Каждая кнопка, параметр и другие органы управления подписаны так, что в справке программа не нуждается, однако она всё же дополнена справкой во избежание конфликтов со стандартами. Возможностями программы доступны прорисовки двадцати одного алгебраического и трёх геометрических фракталов.

Структура.

Программа состоит из двух форм (основной и формы с именами разработчиков и их логотипом). На главной форме могут располагаться два интерфейса:

Алгебраические фракталы

Геометрические фракталы.

Так же имеется окно справки.

Дальнейшая структура интерфейса будет описана в разделе "Руководство пользователя".

Программная структура представляет собой набор функций, каждая из которых является "формулой" прорисовки одного фрактала. И процедуры самой прорисовки.

Рисунок 20. Схема работы программы.


Данной схемой (Рисунок 20) представлен внутренний принцип работы программы. Использование одной процедуры прорисовки значительно уменьшает код и объём компонентов интерфейса. Однако представление каждой формулы множества отдельной функцией значительно уменьшает время прорисовки.

Руководство пользователя.

Для установки данного программного продукта необходимо вставить в дисковод диск с лицензионной версией программы. На экране появится мастер установки. Читая его комментарии, вы можете менять места расположения установленных файлов. Если вы согласны с адресами предложенными программой установки, то нажимайте "далее". Затем на рабочем столе вашего компьютера появится иконка с названием программы "Фрактальная графика". Чтобы открыть её, необходимо навести на неё указатель мыши и кликнуть на ней двойным щелчком.

Данная программа позволяет просмотреть изображения двадцати одного алгебраического и трёх геометрических фракталов. При запуске программы она автоматически предоставляет нам интерфейс алгебраических фракталов. Для переключения на геометрические Вам необходимо в строке меню нажать кнопку "Показать"->"Геометрические фракталы".

Прорисовка происходит на прямоугольной области на левой половине окна программы именуемой холстом.

В меню алгебраических фракталов имеются следующие органы управления и ввода параметров:

R - насыщенность красного цвета

G - насыщенность зелёного цвета

B - насыщенность синего цвета

Колличество иттераций - число повторений координат точки при выявлении её принадлежности определённой области (от этого зависит качество изображения)

Список возможных вариантов фракталов:

Прорисовать - кнопка прорисовки

Очистить - кнопка очистки

По умолчанию - исходные значения

Время прорисовки

При работе с геометрическими фракталами:

Серпинский - прорисовка треугольника Серпинского, справа параметр - число иттераций

Дракон Д. Пиано - прорисовка дракона Д. Пиано, справа параметр - число иттераций

Фейгенбаум - прорисовка дерева Фейгенбаума, внизу список параметров

Очистить - очистить.

Так же имеется возможность сохранения изображения в формате *. bmp. Для этого необходимо прорисовать фрактал (по желанию - увеличить), затем войти в меню - "Фаил"->"Сохранить", не указывая расширение, ввести имя фаила и нажать Enter.

При необходимости просмотра фрактальной структуры Вам необходимо навести указатель мыши на область холста, нажать на левую кнопку, а затем растянуть необходимую область движением вправо и отпустить кнопку мыши.


Рисунок 21. Интерфейс программы.

Влияние параметров.

При разработке данной программы учитывались не только требования заказчика, но так же были проведены не которые исследования. Были выявлены следующие закономерности и факты:

При увеличении числа итераций увеличивается качество изображения, но так же увеличивается и скорость прорисовки. Так же при увеличении фрактала с большим числом итераций мы можем видеть более наглядные изображения, и кратность возможного увеличения заметно возрастает.

Подбор цветовых коэффициентов очень сложная и кропотливая работа, требующая большого ресурса человеко-часов.

Время прорисовки так же зависит от выбранных функций. Так степенные функции прорисовываются гораздо быстрее, чем например степенные.

В ходе работы было создано немалое число фракталов, из которых были выбраны лучшие, путём визуального контроля. Формулы, по которым они прорисовываются, были выведены исключительно разработчиками и являются их частной собственностью.

Начальные значения переменных в функциях могут изменить вид фрактала так, что его оригинал визуально будет совсем не похож на клона. Такой принцип, например, применил Жюлиа.

Радиус окружности - эталон, на котором происходит генерация точек, - это важнейший параметр. Например, Фракталы, построенные на основе множества Мандельброта - Spider (i), отличаются только этим радиусом.

Начальные координаты прорисовки определяют полноту изображения на холсте. При их неправильной простановке фрактал может быть виден не полностью.

Многие параметры влияют на красоту фрактала. При его построении все параметры должны быть точно просчитаны и продуманы. Это залог качественного изображения.

Заключение

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Не только визуальными, но ещё и структура этого изображения отражает нашу жизнь. Взять, к примеру, ДНК, это всего лишь основа, одна итерация, а при повторении… появляется человек! И таких примеров много. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств и броуновского движения. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

Ставропольская краевая открытая научная конференция школьников

Секция: математика

Название работы: Исследование особенностей фрактальных моделей для практического применения

9614524388, vkel -72@ mail . ru

Место выполнения работы : ст Григорополисская

МОУ СОШ №2, 8 класс.

Научный руководитель: Кузнецова Елена

Ивановна, учитель математики и информатики

МОУ СОШ № 2

ст. Григорополисская, 2018

Введение______________________________________________________________3-4стр.

Глава 1.История возникновения фракталов.__________________________________5-6стр.

Глава 2. Классификация фракталов._______________________________________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"_________________________________11-13стр.

Глава 4. Применение фракталов__________________________________________13-15стр.

Глава 5 Практические работы____________________________________________16-24стр.

Заключение____________________________________________________________25.стр

Список литературы и интернет ресурсов____________________________________26 стр.

Введение

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту.

Бертранд Рассел

Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта, Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов. Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.

В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д

ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы.

Теперь поговорим о геометрических фракталах. .

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева". (Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов".

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных).

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону.

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.

Фрактал «Роза» (рис. 10), в силу внешнего сходства с данным цветком. В каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения.

Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.


Итак, у меня получился полноценный фрактал! Основой этого фрактала является первые три линии, о которых я упоминал в начале исследовательской работы.

Фрактальное свойство - это мини ёлочки по бокам главной ёлки, у маленьких ёлок тоже есть свои маленькие ёлки и так до бесконечности. В этот раз нарисуем произвольные линии – основу нашего будущего фрактала.

П
осле большего количества повторений получается вот такая симпатичная ёлочка!

Эксперимент № 2

П
остроение фракталов методом рекурсии в среде PascalABC
.

Дерево Пифагора - разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны». Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

Если изображать только отрезки, соединяющие каким-либо образом выбранные "центры" треугольников, то получается обнаженное дерево Пифагора. Объединив описанные выше процедуры в одной программе, я получил фрактальный пейзаж.

Заключение

Данная работа является введением в мир фракталов. Я рассмотрел только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хочу только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html

Приложение

рис. 7.Фрактал «Ожерелье» Рис.8. Фрактал «Победа»


Рис.9.Фрактал «Квадрат» Рис. 10. Фрактал «Роза»


Рис. 12. Фрактал «Пентаграмма» фрактал «Черная дыра»