Про психологию. Учения и методики

Сероводород с сернистым газом. Сероводород и сернистый газ

Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит, растворим в воде (в 1 V H 2 O растворяется 3 V H 2 S при н.у.); t °пл. = -86° C ; t °кип. = -60°С.

Влияние сероводорода на организм:

Сероводород не только скверно пахнет, он еще и чрезвычайно ядовит. При вдыхании этого газа в большом количестве быстро наступает паралич дыхательных нервов, и тогда человек перестает ощущать запах – в этом и заключается смертельная опасность сероводорода.

Насчитывается множество случаев отравления вредным газом, когда пострадавшими были рабочие, на ремонте трубопроводов. Этот газ тяжелее, поэтому он накапливается в ямах, колодцах, откуда быстро выбраться не так-то просто.

Получение

1) H 2 + S → H 2 S (при t )

2) FeS + 2 HCl → FeCl 2 + H 2 S ­

Химические свойства

1) Раствор H 2 S в воде – слабая двухосновная кислота.

Диссоциация происходит в две ступени:

H 2 S → H + + HS - (первая ступень, образуется гидросульфид - ион)

HS - → 2 H + + S 2- (вторая ступень)

Сероводородная кислота образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды):

Na 2 S – сульфид натрия;

CaS – сульфид кальция;

NaHS – гидросульфид натрия;

Ca ( HS ) 2 – гидросульфид кальция.

2) Взаимодействует с основаниями:

H 2 S + 2 NaOH (избыток) → Na 2 S + 2 H 2 O

H 2 S (избыток) + NaOH → Na Н S + H 2 O

3) H 2 S проявляет очень сильные восстановительные свойства:

H 2 S -2 + Br 2 → S 0 + 2HBr

H 2 S -2 + 2FeCl 3 → 2FeCl 2 + S 0 + 2HCl

H 2 S -2 + 4Cl 2 + 4H 2 O →H 2 S +6 O 4 + 8HCl

3H 2 S -2 + 8HNO 3 (конц) →3H 2 S +6 O 4 + 8NO + 4H 2 O

H 2 S -2 + H 2 S +6 O 4 (конц) →S 0 + S +4 O 2 + 2H 2 O

(при нагревании реакция идет по - иному:

H 2 S -2 + 3H 2 S +6 O 4 (конц) → 4S +4 O 2 + 4H 2 O

4) Сероводород окисляется:

при недостатке O 2

2 H 2 S -2 + O 2 → 2 S 0 + 2 H 2 O

при избытке O 2

2H 2 S -2 + 3O 2 → 2S +4 O 2 + 2H 2 O

5) Серебро при контакте с сероводородом чернеет:

4 Ag + 2 H 2 S + O 2 → 2 Ag 2 S ↓ + 2 H 2 O

Потемневшим предметам можно вернуть блеск. Для этого в эмалированной посуде их кипятят с раствором соды и алюминиевой фольгой. Алюминий восстанавливает серебро до металла, а раствор соды удерживает ионы серы.

6) Качественная реакция на сероводород и растворимые сульфиды - образование темно-коричневого (почти черного) осадка PbS :

H 2 S + Pb(NO 3) 2 → PbS↓ + 2HNO 3

Na 2 S + Pb(NO 3) 2 → PbS↓ + 2NaNO 3

Pb 2+ + S 2- → PbS ↓

Загрязнение атмосферы вызывает почернение поверхности картин, написанных масляными красками, в состав которых входят свинцовые белила. Одной из основных причин потемнения художественных картин старых мастеров было использование свинцовых белил, которые за несколько веков, взаимодействуя со следами сероводорода в воздухе (образуются в небольших количествах при гниении белков; в атмосфере промышленных регионов и др.) превращаются в PbS . Свинцовые белила – это пигмент, представляющий собой карбонат свинца ( II ). Он реагирует с сероводородом, содержащимся в загрязнённой атмосфере, образуя сульфид свинца ( II ), соединение чёрного цвета:

PbCO 3 + H 2 S = PbS + CO 2 + H 2 O

При обработке сульфида свинца ( II ) пероксидом водорода происходит реакция:

PbS + 4 H 2 O 2 = PbSO 4 + 4 H 2 O ,

при этом образуется сульфат свинца ( II ), соединение белого цвета.

Таким образом реставрируют почерневшие масляные картины.


7) Реставрация:

PbS + 4 H 2 O 2 → PbSO 4 (белый) + 4 H 2 O

Сульфиды

Получение сульфидов

1) Многие сульфиды получают нагреванием металла с серой:

Hg + S → HgS

2) Растворимые сульфиды получают действием сероводорода на щелочи:

H 2 S + 2 KOH → K 2 S + 2 H 2 O

3) Нерастворимые сульфиды получают обменными реакциями:

CdCl 2 + Na 2 S → 2NaCl + CdS↓

Pb(NO 3) 2 + Na 2 S → 2NaNO 3 + PbS↓

ZnSO 4 + Na 2 S → Na 2 SO 4 + ZnS↓

MnSO 4 + Na 2 S → Na 2 SO 4 + MnS↓

2SbCl 3 + 3Na 2 S → 6NaCl + Sb 2 S 3 ↓

SnCl 2 + Na 2 S → 2NaCl + SnS↓

Химические свойства сульфидов

1) Растворимые сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют щелочную реакцию:

K 2 S + H 2 O → KHS + KOH

S 2- + H 2 O → HS - + OH -

2) Сульфиды металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в сильных кислотах:

ZnS + H 2 SO 4 → ZnSO 4 + H 2 S­

3)Нерастворимые сульфиды можно перевести в растворимое состояние действием концентрированной HNO 3 :

FeS 2 + 8HNO 3 → Fe(NO 3) 3 + 2H 2 SO 4 + 5NO + 2H 2 O

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Cu
CuS H 2 S SO 2

Задание №2
Составьте уравнения окислительно-восстановительных реакций полного и неполного сгорания сероводорода. Расставьте коэффициенты методом электронного баланса, укажите окислитель и восстановитель для каждой реакции, а так же процессы окисления и восстановления.

Задание №3
Запишите уравнение химической реакции сероводорода с раствором нитрата свинца (II) в молекулярном, полном и кратком ионном виде. Отметьте признаки этой реакции, является ли реакция обратимой?

Задание №4

Сероводород пропустили через 18%-ый раствор сульфата меди (II) массой 200 г. Вычислите массу осадка, выпавшего в результате этой реакции.

Задание №5
Определите объём сероводорода (н.у.), образовавшегося при взаимодействии соляной кислоты с 25% - ым раствором сульфида железа (II) массой 2 кг?

, , 21 , , ,
, 25-26 , 27-28 , , 30, , , , , , , , , , , , /2003;
, , , , , , , , , , , , , /2004

§ 8.1. Окислительно-восстановительные реакции

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ
(продолжение)

2. Озон – окислитель.

Озон – важнейшее для природы и человека вещество.

Озон создает вокруг Земли на высоте от 10 до 50 км озоносферу с максимумом содержания озона на высоте 20–25 км. Находясь в верхних слоях атмосферы, озон не пропускает к поверхности Земли большую часть ультрафиолетовых лучей Солнца, губительно действующих на человека, животный и растительный мир. В последние годы обнаружены участки озоносферы с сильно пониженным содержанием озона, так называемые озоновые дыры. Неизвестно, образовывались ли озоновые дыры раньше. Также непонятны и причины их возникновения. Предполагают, что хлорсодержащие фреоны холодильников и парфюмерных баллончиков под действием ультрафиолетового излучения Солнца выделяют атомы хлора, которые реагируют с озоном и тем самым уменьшают его концентрацию в верхних слоях атмосферы. Опасность озоновых дыр в атмосфере крайне беспокоит ученых.
В нижних слоях атмосферы озон образуется в результате ряда последовательных реакций между кислородом воздуха и оксидами азота, выбрасываемыми плохо отрегулированными двигателями автомобилей и создающимися разрядами высоковольтных линий электропередач. Озон очень вреден для дыхания – он разрушает ткани бронхов и легких. Озон чрезвычайно ядовит (сильнее угарного газа). Предельно допустимая концентрация в воздухе – 10 –5 %.
Таким образом, озон в верхних и в нижних слоях атмосферы оказывает противоположное по своим результатам воздействие на человека и животный мир.
Озон наряду с хлором используют для обработки воды, чтобы разрушить органические примеси и уничтожить бактерии. Однако как хлорирование, так и озонирование воды имеет свои преимущества и недостатки. При хлорировании воды уничтожаются практически полностью бактерии, но образуются вредные для здоровья органические вещества канцерогенного характера (способствуют развитию раковых опухолей) – диоксины и подобные им соединения. При озонировании воды такие вещества не образуются, но озон убивает не все бактерии, и оставшиеся живыми бактерии через некоторое время обильно размножаются, поглощая остатки убитых бактерий, и вода становится даже более загрязненной бактериальной флорой. Поэтому озонирование питьевой воды лучше применять при ее быстром использовании. Очень эффективно озонирование воды в бассейнах, когда вода непрерывно циркулирует через озонатор. Озон применяют также и для очистки воздуха. Он относится к числу экологически чистых окислителей, не оставляющих вредных продуктов своего распада.
Озон окисляет почти все металлы, кроме золота и металлов платиновой группы.

Химические способы получения озона неэффективны или слишком опасны. Поэтому советуем вам получить озон в смеси с воздухом в озонаторе (действие слабого электрического разряда на кислород), имеющемся в школьной физической лаборатории.

Озон чаще всего получают действием на газообразный кислород тихого электрического разряда (без свечения и искр), который происходит между стенками внутреннего и внешнего сосудов озонатора. Простейший озонатор нетрудно изготовить из стеклянных трубок с пробками. Как это сделать, вы поймете из рис. 8.4. Внутренний электрод – металлический стержень (длинный гвоздь), наружный электрод – проволочная спираль. Воздух можно продувать воздушным насосом для аквариума или резиновой грушей от пульверизатора. На рис. 8.4 внутренний электрод находится в стеклянной трубке (как вы думаете, почему? ), но можно собрать озонатор и без нее. Резиновые пробки быстро разъедаются озоном.

Высокое напряжение удобно получить от индукционной катушки системы зажигания автомобиля, непрерывно размыкая соединение с источником низкого напряжения (аккумулятор или выпрямитель тока на 12 В).
Выход озона – несколько процентов.

Качественно обнаружить озон можно при помощи крахмального раствора йодида калия. Этим раствором можно пропитать полоску фильтровальной бумаги или раствор добавить в озонированную воду, а воздух с озоном пропускать через раствор в пробирке. Кислород в реакцию с йодид-ионом не вступает.
Уравнение реакции:

2I – + О 3 + Н 2 О = I 2 + O 2 + 2ОН – .

Напишите уравнения реакций приема и отдачи электронов.
Поднесите к озонатору полоску фильтровальной бумаги, смоченную этим раствором. (Зачем раствор йодида калия должен содержать крахмал?) Определению озона этим способом мешает пероксид водорода (почему?) .
Рассчитайте ЭДС реакции, используя электродные потенциалы:

3. Восстановительные свойства сероводорода и сульфид-иона.

Сероводород – бесцветный газ с запахом тухлых яиц (в состав некоторых белков входит сера).
Для проведения опытов с сероводородом можно пользоваться газообразным сероводородом, пропуская его через раствор с изучаемым веществом, или приливать к исследуемым растворам заранее приготовленную сероводородную воду (это удобнее). Многие реакции можно проводить с раствором сульфида натрия (реакции на сульфид-ион S 2–).
Работать с сероводородом только под тягой! Смеси сероводорода с воздухом сгорают со взрывом.

Сероводород обычно получают в аппарате Киппа, действуя 25%-й серной (разбавленной 1:4) или 20%-й соляной (разбавленной 1:1) кислотой на сульфид железа в виде кусочков размером 1–2 см. Уравнение реакции:

FeS (кр.) + 2Н + = Fe 2+ + H 2 S (г.).

Небольшие количества сероводорода можно получить, поместив кристаллический сульфид натрия в колбу с пробкой, через которую пропущены капельная воронка с краном и отводная трубка. Медленно приливая из воронки 5–10%-ю соляную кислоту (почему не серную?) , колбу постоянно встряхивают покачиванием, чтобы избежать местного скопления непрореагировавшей кислоты. Если этого не делать, неожиданное смешение компонентов может привести к бурной реакции, выталкиванию пробки и разрушению колбы.
Равномерный ток сероводорода получается при нагревании с серой богатых водородом органических соединений, например парафина (1 часть парафина на 1 часть серы, 300 °С).
Для получения сероводородной воды через дистиллированную воду (или прокипяченную) пропускают сероводород. В одном объеме воды растворяется около трех объемов газообразного сероводорода. При стоянии на воздухе сероводородная вода постепенно мутнеет (почему?) .
Сероводород – сильный восстановитель: галогены восстанавливаются им до галогеноводородов, серная кислота – до диоксида серы и серы.
Сероводород ядовит. Предельно допустимая концентрация в воздухе 0,01 мг/л. Даже при незначительных концентрациях сероводород раздражает глаза и дыхательные пути, вызывает головную боль. Концентрации выше 0,5 мг/л опасны для жизни. При более высоких концентрациях поражается нервная система. При вдохе сероводорода возможна остановка сердца и дыхания. Иногда сероводород скапливается в пещерах и канализационных колодцах, и попавший туда человек мгновенно теряет сознание и погибает.
В то же время сероводородные ванны оказывают лечебное действие на организм человека.

3а. Реакция сероводорода с пероксидом водорода.

Изучите действие раствора пероксида водорода на сероводородную воду или раствор сульфида натрия.
По результатам опытов составьте уравнения реакций. Рассчитайте ЭДС реакции и сделайте вывод о возможности ее прохождения.

3б. Реакция сероводорода с серной кислотой.

В пробирку с 2–3 мл сероводородной воды (или раствора сульфида натрия) прилейте по каплям концентрированную серную кислоту (осторожно!) до появления мути. Что это за вещество? Какие другие продукты могут получиться в этой реакции?
Напишите уравнения реакций. Рассчитайте ЭДС реакции, используя электродные потенциалы:

4. Диоксид серы и сульфит-ион.

Диоксид серы, сернистый газ – важнейший загрязнитель атмосферы, выделяемый автомобильными двигателями при использовании плохо очищенного бензина и топками, в которых сгорают серосодержащие угли, торф или мазут. Ежегодно в атмосферу из-за сжигания угля и нефти выбрасываются миллионы тонн диоксида серы.
В природе диоксид серы встречается в вулканических газах. Диоксид серы окисляется кислородом воздуха в триоксид серы, который, поглощая воду (пары), превращается в серную кислоту. Выпадающие кислотные дожди разрушают цементные части построек, памятники архитектуры, высеченные из камня скульптуры. Кислотные дожди замедляют рост растений и даже приводят к их гибели, убивают живые организмы водоемов. Такие дожди вымывают из пашен малорастворимые в воде фосфорные удобрения, которые, попадая в водоемы, приводят к бурному размножению водорослей и быстрому заболачиванию прудов, рек.
Диоксид серы – бесцветный газ с резким запахом. Получать диоксид серы и работать с ним следует под тягой.

Сернистый газ можно получить, поместив в колбу, закрывающуюся пробкой с отводной трубкой и капельной воронкой, 5–10 г сульфита натрия. Из капельной воронки с 10 мл концентрированной серной кислоты (крайняя осторожность!) приливайте ее по каплям к кристаллам сульфита натрия. Вместо кристаллического сульфита натрия можно воспользоваться его насыщенным раствором.
Диоксид серы можно получить также реакцией между металлической медью и серной кислотой. В круглодонную колбу, снабженную пробкой с газоотводной трубкой и капельной воронкой, положите медные стружки или куски проволоки и прилейте из капельной воронки немного серной кислоты (на 10 г меди берется около 6 мл концентрированной серной кислоты). Для начала реакции слегка нагрейте колбу. После этого кислоту приливайте по каплям. Напишите уравнения приема и отдачи электронов и суммарное уравнение.
Свойства диоксида серы можно изучать, пропуская газ через раствор реагента, или в виде водного раствора (сернистой кислоты). Такие же результаты получаются при использовании подкисленных растворов сульфитов натрия Na 2 SO 3 и калия К 2 SO 3 . В одном объеме воды растворяется до сорока объемов сернистого газа (получается ~6%-й раствор).
Диоксид серы токсичен. При легких отравлениях начинается кашель, насморк, появляются слезы, начинается головокружение. Увеличение дозы приводит к остановке дыхания.

4а. Взаимодействие сернистой кислоты с пероксидом водорода.

Предскажите продукты взаимодействия сернистой кислоты и пероксида водорода. Проверьте свое предположение опытом.
К 2–3 мл сернистой кислоты прилейте столько же 3%-го раствора пероксида водорода. Как доказать образование предполагаемых продуктов реакции?
Тот же опыт повторите с подкисленным и щелочным растворами сульфита натрия.
Напишите уравнения реакций и рассчитайте ЭДС процесса.
Выберите нужные вам электродные потенциалы:

4б. Реакция между сернистым газом и сероводородом.

Эта реакция проходит между газообразными SO 2 и H 2 S и служит для получения серы. Реакция интересна также тем, что два загрязнителя атмосферы взаимно уничтожают друг друга. Проходит ли эта реакция между растворами сероводорода и сернистого газа? Ответьте на этот вопрос опытом.
Выберите электродные потенциалы для определения возможности прохождения реакции в растворе:

Попробуйте провести термодинамический расчет возможности прохождения реакций. Термодинамические характеристики веществ для определения возможности прохождения реакции между газообразными веществами следующие:

При каком состоянии веществ – газообразном или в растворе – реакции более предпочтительны?

Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома [ 10 Ne]3s 2 3p 4 , характерные степени окисления 0, ‑II, +IV и +VI, состояние S VI считается устойчивым.

Шкала степеней окисления серы:

Электроотрицательность серы равна 2,60, для нее характерны неметаллические свойства. В водородных и кислородных соединениях находится в составе различных анионов, образует кислородсодержащие кислоты и их соли, бинарные соединения.

В природе – пятнадцатый по химической распространенности элемент (седьмой среди неметаллов). Встречается в свободном (самородном) и связанном виде. Жизненно важный элемент для высших организмов.

Сера S. Простое вещество. Желтая кристаллическая (α‑ромбическая и β‑моноклинная,

при 95,5 °C) или аморфная (пластическая). В узлах кристаллической решетки находятся молекулы S 8 (неплоские циклы типа «корона»), аморфная сера состоит из цепей S n . Низкоплавкое вещество, вязкость жидкости проходит через максимум при 200 °C (разрыв молекул S 8 , переплетение цепей S n). В паре – молекулы S 8 , S 6 , S 4 , S 2 . При 1500 °C появляется одноатомная сера (в химических уравнениях для простоты любая сера изображается как S).

Сера не растворяется в воде и при обычных условиях не реагирует с ней, хорошо растворима в сероуглероде CS 2 .

Сера, особенно порошкообразная, обладает высокой активностью при нагревании. Реагирует как окислитель с металлами и неметаллами:

а как восстановитель – с фтором, кислородом и кислотами (при кипячении):

Сера подвергается дисмутации в растворах щелочей:

3S 0 + 6КОН (конц.) = 2K 2 S ‑II + K 2 S IV O 3 + 3H 2 O

При высокой температуре (400 °C) сера вытесняет иод из иодоводорода:

S + 2НI (г) = I 2 + H 2 S,

но в растворе реакция идет в обратную сторону:

I 2 + H 2 S (p) = 2 HI + S↓

Получение : в промышленности выплавляется из природных залежей самородной серы (с помощью водяного пара), выделяется при десульфурации продуктов газификации угля.

Сера применяется для синтеза сероуглерода, серной кислоты, сернистых (кубовых) красителей, при вулканизации каучука, как средство защиты растений от мучнистой росы, для лечения кожных заболеваний.

Сероводород H 2 S. Бескислородная кислота. Бесцветный газ с удушающим запахом, тяжелее воздуха. Молекула имеет строение дважды незавершенного тетраэдра [::S(H) 2 ]

(sp 3 ‑гибридизация, валетный угол Н – S–Н далек от тетраэдрического). Неустойчив при нагревании выше 400 °C. Малорастворим в воде (2,6 л/1 л Н 2 O при 20 °C), насыщенный раствор децимолярный (0,1М, «сероводородная вода»). Очень слабая кислота в растворе, практически не диссоциирует по второй стадии до ионов S 2‑ (максимальная концентрация S 2‑ равна 1 10 ‑13 моль/л). При стоянии на воздухе раствор мутнеет (ингибитор – сахароза). Нейтрализуется щелочами, не полностью – гидратом аммиака. Сильный восстановитель. Вступает в реакции ионного обмена. Сульфидирующий агент, осаждает из раствора разноокрашенные сульфиды с очень малой растворимостью.

Качественные реакции – осаждение сульфидов, а также неполное сгорание H 2 S с образованием желтого налета серы на внесенном в пламя холодном предмете (фарфоровый шпатель). Побочный продукт очистки нефти, природного и коксового газа.

Применяется в производстве серы, неорганических и органических серосодержащих соединений как аналитический реагент. Чрезвычайно ядовит. Уравнения важнейших реакций:

Получение : в промышленности – прямым синтезом:

Н 2 + S = H 2 S (150–200 °C)

или при нагревании серы с парафином;

в лаборатории – вытеснением из сульфидов сильными кислотами

FeS + 2НCl (конц.) = FeCl 2 + H 2 S

или полным гидролизом бинарных соединений:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S

Сульфид натрия Na 2 S. Бескислородная соль. Белый, очень гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. При стоянии на воздухе раствор мутнеет (коллоидная сера) и желтеет (окраска полисульфида). Типичный восстановитель. Присоединяет серу. Вступает в реакции ионного обмена.

Качественные реакции на ион S 2‑ – осаждение разноокрашенных сульфидов металлов, из которых MnS, FeS, ZnS разлагаются в НCl (разб.).

Применяется в производстве сернистых красителей и целлюлозы, для удаления волосяного покрова шкур при дублении кож, как реагент в аналитической химии.

Уравнения важнейших реакций:

Na 2 S + 2НCl (разб.) = 2NaCl + H 2 S

Na 2 S + 3H 2 SO 4 (конц.) = SO 2 + S↓ + 2H 2 O + 2NaHSO 4 (до 50 °C)

Na 2 S + 4HNO 3 (конц.) = 2NO + S↓ + 2H 2 O + 2NaNO 3 (60 °C)

Na 2 S + H 2 S (насыщ.) = 2NaHS

Na 2 S (т) + 2O 2 = Na 2 SO 4 (выше 400 °C)

Na 2 S + 4H 2 O 2 (конц.) = Na 2 SO 4 + 4H 2 O

S 2‑ + M 2+ = MnS (телесн.)↓; FeS (черн.)↓; ZnS (бел.)↓

S 2‑ + 2Ag + = Ag 2 S (черн.)↓

S 2‑ + M 2+ = СdS (желт.)↓; PbS, CuS, HgS (черные)↓

3S 2‑ + 2Bi 3+ = Bi 2 S 3 (кор. – черн.)↓

3S 2‑ + 6H 2 O + 2M 3+ = 3H 2 S + 2M(OH) 3 ↓ (M = Al, Cr)

Получение в промышленности – прокаливание минерала мирабилит Na 2 SO 4 10Н 2 O в присутствии восстановителей:

Na 2 SO 4 + 4Н 2 = Na 2 S + 4Н 2 O (500 °C, кат. Fe 2 O 3)

Na 2 SO 4 + 4С (кокс) = Na 2 S + 4СО (800–1000 °C)

Na 2 SO 4 + 4СО = Na 2 S + 4СO 2 (600–700 °C)

Сульфид алюминия Al 2 S 3 . Бескислородная соль. Белый, связь Al – S преимущественно ковалентная. Плавится без разложения под избыточным давлением N 2 , легко возгоняется. Окисляется на воздухе при прокаливании. Полностью гидролизуется водой, не осаждается из раствора. Разлагается сильными кислотами. Применяется как твердый источник чистого сероводорода. Уравнения важнейших реакций:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S (чистый)

Al 2 S 3 + 6НCl (разб.) = 2AlCl 3 + 3H 2 S

Al 2 S 3 + 24HNO 3 (конц.) = Al 2 (SO 4) 3 + 24NO 2 + 12H 2 O (100 °C)

2Al 2 S 3 + 9O 2 (воздух) = 2Al 2 O 3 + 6SO 2 (700–800 °C)

Получение : взаимодействие алюминия с расплавленной серой в отсутствие кислорода и влаги:

2Al + 3S = AL 2 S 3 (150–200 °C)

Сульфид железа (II) FeS. Бескислородная соль. Черно‑серый с зеленым оттенком, тугоплавкий, разлагается при нагревании в вакууме. Во влажном состоянии чувствителен к кислороду воздуха. Нерастворим в воде. Не выпадает в осадок при насыщении растворов солей железа(II) сероводородом. Разлагается кислотами. Применяется как сырье в производстве чугуна, твердый источник сероводорода.

Соединение железа(III) состава Fe 2 S 3 не известно (не получено).

Уравнения важнейших реакций:

Получение:

Fe + S = FeS (600 °C)

Fe 2 O 3 + H 2 + 2H 2 S = 9FeS + 3H 2 O (700‑1000 °C)

FeCl 2 + 2NH 4 HS (изб.) = FeS ↓ + 2NH 4 Cl + H 2 S

Дисульфид железа FeS 2 . Бинарное соединение. Имеет ионное строение Fe 2+ (–S – S–) 2‑ . Темно‑желтый, термически устойчивый, при прокаливании разлагается. Нерастворим в воде, не реагирует с разбавленными кислотами, щелочами. Разлагается кислотами‑окислителями, подвергается обжигу на воздухе. Применяется как сырье в производстве чугуна, серы и серной кислоты, катализатор в органическом синтезе. В природе – рудные минералы пирит и марказит.

Уравнения важнейших реакций:

FeS 2 = FeS + S (выше 1170 °C, вакуум)

2FeS 2 + 14H 2 SO 4 (конц., гор.) = Fe 2 (SO 4) 3 + 15SO 2 + 14Н 2 O

FeS 2 + 18HNO 3 (конц.) = Fe(NO 3) 3 + 2H 2 SO 4 + 15NO 2 + 7H 2 O

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

Гидросульфид аммония NH 4 HS. Бескислородная кислая соль. Белый, плавится под избыточным давлением. Весьма летучий, термически неустойчивый. На воздухе окисляется. Хорошо растворим в воде, гидролизуется по катиону и аниону (преобладает), создает щелочную среду. Раствор желтеет на воздухе. Разлагается кислотами, в насыщенном растворе присоединяет серу. Щелочами не нейтрализуется, средняя соль (NH 4) 2 S не существует в растворе (условия получения средней соли см. в рубрике «H 2 S»). Применяется в качестве компонента фотопроявителей, как аналитический реагент (осадитель сульфидов).

Уравнения важнейших реакций:

NH 4 HS = NH 3 + H 2 S (выше 20 °C)

NH 4 HS + НCl (разб.) = NH 4 Cl + H 2 S

NH 4 HS + 3HNO 3 (конц.) = S↓ + 2NO 2 + NH 4 NO 3 + 2H 2 O

2NH 4 HS (насыщ. H 2 S) + 2CuSO 4 = (NH 4) 2 SO 4 + H 2 SO 4 + 2CuS↓

Получение : насыщение концентрированного раствора NH 3 сероводородом:

NH 3 Н 2 O (конц.) + H 2 S (г) = NH 4 HS + Н 2 O

В аналитической химии раствор, содержащий равные количества NH 4 HS и NH 3 Н 2 O, условно считают раствором (NH 4) 2 S и используют формулу средней соли в записи уравнений реакций, хотя сульфид аммония полностью гидролизуется в воде до NH 4 HS и NH 3 Н 2 O.

Диоксид серы. Сульфиты

Диоксид серы SO 2 . Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O) 2 ] (sр 2 ‑гибридизация), содержит σ,π‑связи S=O. Легко сжижается, термически устойчивый. Хорошо растворим в воде (~40 л/1 л Н 2 O при 20 °C). Образует полигидрат, обладающий свойствами слабой кислоты, продукты диссоциации – ионы HSO 3 ‑ и SO 3 2‑ . Ион HSO 3 ‑ имеет две таутомерные формы – симметричную (некислотную) со строением тетраэдра (sр 3 ‑гибридизация), которая преобладает в смеси, и несимметричную (кислотную) со строением незавершенного тетраэдра [: S(O) 2 (OH)] (sр 3 ‑гибридизация). Ион SO 3 2‑ также тетраэдрический [: S(O) 3 ].

Реагирует со щелочами, гидратом аммиака. Типичный восстановитель, слабый окислитель.

Качественная реакция – обесцвечивание желто‑коричневой «йодной воды». Промежуточный продукт в производстве сульфитов и серной кислоты.

Применяется для отбеливания шерсти, шелка и соломы, консервирования и хранения фруктов, как дезинфицирующее средство, антиоксидант, хладагент. Ядовит.

Соединение состава H 2 SO 3 (сернистая кислота) не известно (не существует).

Уравнения важнейших реакций:

Растворение в воде и кислотные свойства:

Получение : в промышленности – сжигание серы в воздухе, обогащенном кислородом, и, в меньшей степени, обжиг сульфидных руд (SO 2 – попутный газ при обжиге пирита):

S + O 2 = SO 2 (280–360 °C)

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 (800 °C, обжиг)

в лаборатории – вытеснение серной кислотой из сульфитов:

BaSO 3(т) + H 2 SO 4 (конц.) = BaSO 4 ↓ + SO 2 + Н 2 O

Сульфит натрия Na 2 SO 3 . Оксосоль. Белый. При нагревании на воздухе разлагается без плавления, плавится под избыточным давлением аргона. Во влажном состоянии и в растворе чувствителен к кислороду воздуха. Хорошо растворим в воде, гидролизуется по аниону. Разлагается кислотами. Типичный восстановитель.

Качественная реакция на ион SO 3 2‑ – образование белого осадка сульфита бария, который переводится в раствор сильными кислотами (НCl, HNO 3).

Применяется как реактив в аналитической химии, компонент фотографических растворов, нейтрализатор хлора при отбеливании тканей.

Уравнения важнейших реакций:

Получение:

Na 2 CO 3 (конц.) + SO 2 = Na 2 SO 3 + CO 2

Серная кислота. Сульфаты

Серная кислота H 2 SO 4 . Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молекула имеет искаженно‑тетраэдрическое строение (sр 3 ‑гибридизация), содержит ковалентные σ‑связи S – ОН и σπ‑связи S=O. Ион SO 4 2‑ имеет правильно‑тетраэдрическое строение . Обладает широким температурным интервалом жидкого состояния (~300 градусов). При нагревании выше 296 °C частично разлагается. Перегоняется в виде азеотропной смеси с водой (массовая доля кислоты 98,3 %, температура кипения 296–340 °C), при более сильном нагревании разлагается полностью. Неограниченно смешивается с водой (с сильным экзо ‑эффектом). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Переводит металлы в сульфаты (при избытке концентрированной кислоты в обычных условиях образуются растворимые гидросульфаты), но металлы Be, Bi, Со, Fe, Mg и Nb пассивируются в концентрированной кислоте и не реагируют с ней. Реагирует с основными оксидами и гидроксидами, разлагает соли слабых кислот. Слабый окислитель в разбавленном растворе (за счет Н I), сильный – в концентрированном растворе (за счет S VI). Хорошо растворяет SO 3 и реагирует с ним (образуется тяжелая маслообразная жидкость – олеум, содержит H 2 S 2 O 7).

Качественная реакция на ион SO 4 2‑ – осаждение белого сульфата бария BaSO 4 (осадок не переводится в раствор соляной и азотной кислотами, в отличие от белого осадка BaSO 3).

Применяется в производстве сульфатов и других соединений серы, минеральных удобрений, взрывчатых веществ, красителей и лекарственных препаратов, в органическом синтезе, для «вскрытия» (первого этапа переработки) промышленно важных руд и минералов, при очистке нефтепродуктов, электролизе воды, как электролит свинцовых аккумуляторов. Ядовита, вызывает ожоги кожи. Уравнения важнейших реакций:

Получение в промышленности :

а) синтез SO 2 из серы, сульфидных руд, сероводорода и сульфатных руд:

S + O 2 (воздух) = SO 2 (280–360 °C)

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

2H 2 S + 3O 2 (изб.) = 2SO 2 + 2Н 2 O (250–300 °C)

CaSO 4 + С (кокс) = СаО + SO 2 + СО (1300–1500 °C)

б) конверсия SO 2 в SO 3 в контактном аппарате:

в) синтез концентрированной и безводной серной кислоты:

Н 2 O (разб. H 2 SO 4) + SO 3 =H 2 SO 4 (конц., безводн.)

(поглощение SO 3 чистой водой с получением H 2 SO 4 не проводится из‑за сильного разогревания смеси и обратного разложения H 2 SO 4 , см. выше);

г) синтез олеума – смеси безводной H 2 SO 4 , дисерной кислоты H 2 S 2 O 7 и избыточного SO 3 . Растворенный SO 3 гарантирует безводность олеума (при попадании воды тут же образуется H 2 SO 4), что позволяет безопасно перевозить его в стальных цистернах.

Сульфат натрия Na 2 SO 4 . Оксосоль. Белый, гигроскопичный. Плавится и кипит без разложения. Образует кристаллогидрат (минерал мирабилит), легко теряющий воду; техническое название глауберова соль. Хорошо растворим в воде, не гидролизуется. Реагирует с H 2 SO 4 (конц.), SO 3 . Восстанавливается водородом, коксом при нагревании. Вступает в реакции ионного обмена.

Применяется в производстве стекла, целлюлозы и минеральных красок, как лекарственное средство. Содержится в рапе соляных озер, в частности в заливе Кара‑Богаз‑Гол Каспийского моря.

Уравнения важнейших реакций:

Гидросульфат калия KHSO 4 . Кислая оксосоль. Белый, гигроскопичный, но кристаллогидратов не образует. При нагревании плавится и разлагается. Хорошо растворим в воде, в растворе анион подвергается диссоциации, среда раствора сильнокислотная. Нейтрализуется щелочами.

Применяется как компонент флюсов в металлургии, составная часть минеральных удобрений.

Уравнения важнейших реакций:

2KHSO 4 = K 2 SO 4 + H 2 SO 4 (до 240 °C)

2KHSO 4 = K 2 S 2 O 7 + Н 2 O (320–340 °C)

KHSO 4 (разб.) + КОН (конц.) = K 2 SO 4 + Н 2 O KHSO 4 + КCl = K 2 SO 4 + НCl (450–700 °C)

6KHSO 4 + М 2 O 3 = 2KM(SO 4) 2 + 2K 2 SO 4 + 3H 2 O (350–500 °C, M = Al, Cr)

Получение : обработка сульфата калия концентрированной (более чем 6O%‑ной) серной кислотой на холоду:

K 2 SO 4 + H 2 SO 4 (конц.) = 2KHSO 4

Сульфат кальция CaSO 4 . Оксосоль. Белый, весьма гигроскопичный, тугоплавкий, при прокаливании разлагается. Природный CaSO 4 встречается в виде очень распространенного минерала гипс CaSO 4 2Н 2 O. При 130 °C гипс теряет часть воды и переходит в жжёный (штукатурный) гипс 2CaSO 4 Н 2 O (техническое название алебастр). Полностью обезвоженный (200 °C) гипс отвечает минералу ангидрит CaSO 4 . Малорастворим в воде (0,206 г/100 г Н 2 O при 20 °C), растворимость уменьшается при нагревании. Реагирует с H 2 SO 4 (конц.). Восстанавливается коксом при сплавлении. Определяет большую часть «постоянной» жесткости пресной воды (подробнее см. 9.2).

Уравнения важнейших реакций: 100–128 °C

Применяется как сырье в производстве SO 2 , H 2 SO 4 и (NH 4) 2 SO 4 , как флюс в металлургии, наполнитель бумаги. Приготовленный из жженого гипса вяжущий строительный раствор «схватывается» быстрее, чем смесь на основе Са(ОН) 2 . Затвердевание обеспечивается связыванием воды, образованием гипса в виде каменной массы. Используется жженый гипс для изготовления гипсовых слепков, архитектурно‑декоративных форм и изделий, перегородочных плит и панелей, каменных полов.

Сульфат алюминия‑калия KAl(SO 4) 2 . Двойная оксосоль. Белый, гигроскопичный. При сильном нагревании разлагается. Образует кристаллогидрат – алюжокалиевые квасцы. Умеренно растворим в воде, гидролизуется по катиону алюминия. Реагирует со щелочами, гидратом аммиака.

Применяется как протрава при крашении тканей, дубитель кож, коагулянт при очистке пресной воды, компонент составов для проклеивания бумаги, наружное кровоостанавливающее средство в медицине и косметологии. Образуется при совместной кристаллизации сульфатов алюминия и калия.

Уравнения важнейших реакций:

Сульфат хрома(III) – калия KCr(SO 4) 2 . Двойная оксосоль. Красный (гидрат темно‑фиолетовый, техническое название хрожокалиевые квасцы). При нагревании разлагается без плавления. Хорошо растворим в воде (серо‑синяя окраска раствора отвечает аквакомплексу 3+), гидролизуется по катиону хрома(III). Реагирует со щелочами, гидратом аммиака. Слабый окислитель и восстановитель. Вступает в реакции ионного обмена.

Качественные реакции на ион Cr 3+ – восстановление до Cr 2+ или окисление до желтого CrO 4 2‑ .

Применяется как дубитель кож, протрава при крашении тканей, реактив в фотографии. Образуется при совместной кристаллизации сульфатов хрома(III) и калия. Уравнения важнейших реакций:

Сульфат марганца (II) MnSO 4 . Оксосоль. Белый, при прокаливании плавится и разлагается. Кристаллогидрат MnSO 4 5Н 2 O – красно‑розовый, техническое название марганцевый купорос. Хорошо растворим в воде, светло‑розовая (почти бесцветная) окраска раствора отвечает аквакомплексу 2+ ; гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака. Слабый восстановитель, реагирует с типичными (сильными) окислителями.

Качественные реакции на ион Mn 2+ – конмутация с ионом MnO 4 и исчезновение фиолетовой окраски последнего, окисление Mn 2+ до MnO 4 и появление фиолетовой окраски.

Применяется для получения Mn, MnO 2 и других соединений марганца, как микроудобрение и аналитический реагент.

Уравнения важнейших реакций:

Получение:

2MnO 2 + 2H 2 SO 4 (конц.) = 2MnSO 4 + O 2 + 2H 2 O (100 °C)

Сульфат железа (II) FeSO 4 . Оксосоль. Белый (гидрат светло‑зеленый, техническое название железный купорос), гигроскопичный. Разлагается при нагревании. Хорошо растворим в воде, в малой степени гидролизуется по катиону. Быстро окисляется в растворе кислородом воздуха (раствор желтеет и мутнеет). Реагирует с кислотами‑окислителями, щелочами, гидратом аммиака. Типичный восстановитель.

Применяется как компонент минеральных красок, электролитов в гальванотехнике, консервант древесины, фунгицид, лекарственное средство против анемии. В лаборатории чаще берется в виде двойной соли Fe(NH 4) 2 (SO 4) 2 6Н 2 O (соль Мора), более устойчивой к действию воздуха.

Уравнения важнейших реакций:

Получение:

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2

FeCO 3 + H 2 SO 4 (разб.) = FeSO 4 + CO 2 + H 2 O

7.4. Неметаллы VA‑группы

Азот. Аммиак

Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0, ‑III, +III и +V, реже +II, +IV и др.; состояние N v считается относительно устойчивым.

Шкала степеней окисления азота:

Азот обладает высокой электроотрицательностью (3,07), третий после F и О. Проявляет типичные неметаллические (кислотные) свойства. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, а также катион аммония NH 4 + и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

Азот N 2 . Простое вещество. Состоит из неполярных молекул с очень устойчивой σππ‑связью N ≡ N, этим объясняется химическая инертность азота при обычных условиях. Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха: 78,09 % по объему, 75,52 % по массе. Из жидкого воздуха азот выкипает раньше кислорода O 2 . Малорастворим в воде (15,4 мл/1 л Н 2 O при 20 °C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 реагирует только с литием (во влажной атмосфере), образуя нитрид лития Li 3 N, нитриды других элементов синтезируют при сильном нагревании:

N 2 + 3Mg = Mg 3 N 2 (800 °C)

В электрическом разряде N 2 реагирует с фтором и в очень малой степени – с кислородом:

Обратимая реакция получения аммиака протекает при 500 °C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe/F 2 O 3 /FeO, в лаборатории Pt):

В соответствии с принципом Ле‑Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450–500 °C, достигая 15 %‑ного выхода аммиака. Непрореагировавшие N 2 и Н 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2С (кокс) + O 2 = 2СО при нагревании. В этих случаях получают азот, содержащий также примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N ‑III H 4 N III O 2(т) = N 2 0 + 2H 2 O (60–70 °C)

NH 4 Cl (p) + KNO 2(p) = N 2 0 + KCl + 2H 2 O (100 °C)

Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

Аммиак NH 3 . Бинарное соединение, степень окисления азота равна – III. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3)] (sр 3 ‑гибридизация). Наличие у азота в молекуле NH 3 донорной пары электронов на sр 3 ‑гибридной орбитали обусловливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 + . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л Н 2 O при 20 °C); доля в насыщенном растворе равна = 34 % по массе и = 99 % по объему, рН = 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Crорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N ‑III) и окислительные (за счет Н I) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным НCl, почернение бумажки, смоченной раствором Hg 2 (NO 3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.

Уравнения важнейших реакций:

Получение : в лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью (NaOH + СаО):

или кипячение водного раствора аммиака с последующим осушением газа.

В промышленности аммиак синтезируют из азота (см.) с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.

Гидрат аммиака NH 3 Н 2 O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и Н 2 O, связанные слабой водородной связью H 3 N… НОН. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 ‑ и анион ОН ‑). Катион аммония имеет правильно‑тетраэдрическое строение (sp 3 ‑гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N III) в концентрированном растворе. Вступает в реакции ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным НCl.

Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.

В 1М растворе аммиака содержится в основном гидрат NH 3 Н 2 O и лишь 0,4 % ионов NH 4 + и ОН ‑ (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате. Уравнения важнейших реакций:

NH 3 Н 2 O (конц.) = NH 3 + Н 2 O (кипячение с NaOH)

NH 3 Н 2 O + НCl (разб.) = NH 4 Cl + Н 2 O

3(NH 3 Н 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3NH 4 Cl

8(NH 3 Н 2 O) (конц.) + ЗBr 2(р) = N 2 + 6NH 4 Br + 8Н 2 O (40–50 °C)

2(NH 3 Н 2 O) (конц.) + 2КMnO 4 = N 2 + 2MnO 2 ↓ + 4Н 2 O + 2КОН

4(NH 3 Н 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O

4(NH 3 Н 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4Н 2 O

6(NH 3 Н 2 O) (конц.) + NiCl 2 = Cl 2 + 6Н 2 O

Разбавленный раствор аммиака (3–10 %‑ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5–25 %‑ный) – аммиачной водой (выпускается промышленностью).


Похожая информация.


- (сернистый водород) H2S, бесцветный газ с запахом тухлых яиц; tпл?85,54 .С, tкип?60,35 .С; при 0 .С сжижается под давлением 1 МПа. Восстановитель. Побочный продукт при очистке нефтепродуктов, коксовании угля и др.; образуется при разложении… … Большой Энциклопедический словарь

СЕРОВОДОРОД - (H2S), бесцветный, ядовитый газ с запахом тухлых яиц. Образуется в процессах гниения, содержится в сырой нефти. Получают действием серной кислоты на сульфиды металлов. Используется в традиционном КАЧЕСТВЕННОМ АНАЛИЗЕ. Свойства: температура… … Научно-технический энциклопедический словарь

СЕРОВОДОРОД - СЕРОВОДОРОД, сероводорода, мн. нет, муж. (хим.). Газ, образующийся при гниении белковых веществ, издающий запах тухлых яиц. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

СЕРОВОДОРОД - СЕРОВОДОРОД, а, муж. Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ. | прил. сероводородный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

сероводород - сущ., кол во синонимов: 1 газ (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

СЕРОВОДОРОД - бесцветный ядовитый газ H2S с неприятным специфическим запахом. Обладает слабокислотными свойствами. 1 л С. при t 0 °C и давлении 760 мм составляет 1,539 г. Встречается в нефтях, в природных водах, в газах биохимического происхождения, как… … Геологическая энциклопедия

СЕРОВОДОРОД - СЕРОВОДОРОД, H2S (молекулярный вес 34,07), бесцветный газ с характерным запахом тухлых яиц. Литр газа при нормальных условиях (0°, 760 мм) весит 1,5392 г. Темп, кипения 62°, плавления 83°; С. входит в состав газообразных выделений… … Большая медицинская энциклопедия

сероводород - — Тематики биотехнологии EN hydrogen sulfide … Справочник технического переводчика

сероводород - СЕРОВОДОРОД, а, м Бесцветный газ с резким неприятным запахом, образующийся при разложении белковых веществ и представляющий собой соединение серы с водородом. Сероводород содержится в некоторых минеральных водах и лечебных грязях и используется… … Толковый словарь русских существительных

Книги

  • Как бросить курить! (DVD) , Пелинский Игорь , "Нет ничего легче, чем бросить курить, - я уже тридцать раз бросал" (Марк Твен). Почему люди начинают курить? Чтобы расслабиться, отвлечься, собраться с мыслями, избавиться от стресса или… Категория: Психология. Бизнес Серия: Путь к здоровью и совершенству Издатель: Сова-Фильм , Купить за 275 руб
  • Вестиментиферы – бескишечные беспозвоночные морских глубин , В. В. Малахов , Монография посвящена новой группе гигантских (до 2,5 м) глубоководных животных, обитающих в районах глубоководной гидротермальной активности и холодных углеводородных просачиваний. Наиболее… Категория: Медицина Издатель: Товарищество научных изданий КМК , Купить за 176 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3, 10/2009

ЗАНЯТИЕ 30

10-й класс (первый год обучения)

Сера и ее соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Происхождение названия.

3. Физические свойства.

4. Химические свойства.

5. Нахождение в природе.

6. Основные методы получения.

7. Важнейшие соединения серы (сероводород, сероводородная кислота и ее соли; сернистый газ, сернистая кислота и ее соли; триоксид серы, серная кислота и ее соли).

В периодической системе сера находится в главной подгруппе VI группы (подгруппа халькогенов). Электронная формула серы 1s 2 2s 2 p 6 3s 2 p 4 , это р -элемент. В зависимости от состояния сера может проявлять валентность II, IV или VI:

S: 1s 2 2s 2 2p 6 3s 2 3p 4 3d 0 (валентность II),

S * : 1s 2 2s 2 2p 6 3s 2 3p 3 3d 1 (валентность IV),

S ** : 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 (валентность VI).

Характерные степени окисления серы –2, +2, +4, +6 (в дисульфидах, содержащих мостиковую связь –S–S– (например, FeS 2), степень окисления серы равна –1); в соединениях входит в состав анионов, с более электроотрицательными элементами – в состав катионов, например:

Сера – элемент с высокой электроотрицательностью, проявляет неметаллические (кислотные) свойства. Имеет четыре стабильных изотопа с массовыми числами 32, 33, 34 и 36. Природная сера на 95 % состоит из изотопа 32 S.

Русское название серы произошло от санскритского слова cira – светло-желтый, по цвету природной серы. Латинское название sulfur переводится как «горючий порошок». 1

Ф и з и ч е с к и е с в о й с т в а

Сера образует три аллотропные модификации : ромбическая (-сера), моноклинная (-сера) и пластическая , или каучукоподобная. Наиболее устойчива при обычных условиях ромбическая сера, а выше 95,5 °С стабильна моноклинная сера. Обе эти аллотропные модификации имеют молекулярную кристаллическую решетку, построенную из молекул состава S 8 , расположенных в пространстве в виде короны; атомы соединены одинарными ковалентными связями. Различие ромбической и моноклинной серы состоит в том, что в кристаллической решетке молекулы упакованы по-разному.

Если ромбическую или моноклинную серу нагреть до точки кипения (444,6 °С) и полученную жидкость вылить в холодную воду, то образуется пластическая сера, по свойствам напоминающая резину. Пластическая сера состоит из длинных зигзагообразных цепей. Эта аллотропная модификация неустойчива и самопроизвольно превращается в одну из кристаллических форм.

Ромбическая сера – твердое кристаллическое вещество желтого цвета; в воде не растворяется (и не смачивается), но хорошо растворяется во многих органических растворителях (сероуглерод, бензол и т.д.). Сера обладает очень плохой электро- и теплопроводностью. Температура плавления ромбической серы +112,8 °С, при температуре 95,5 °С ромбическая сера переходит в моноклинную:

Х и м и ч е с к и е с в о й с т в а

По своим химическим свойствам сера является типичным активным неметаллом. В реакциях может быть как окислителем, так и восстановителем.

Металлы (+):

2Na + S = Na 2 S,

2Al + 3S Al 2 S 3 ,

Неметаллы (+/–)*:

2P + 3S P 2 S 3 ,

S + Cl 2 = SCl 2 ,

S + 3F 2 = SF 6 ,

S + N 2 реакция не идет.

Н 2 О (–). сера не смачивается водой.

Основные оксиды (–).

Кислотные оксиды (–).

Основания (+/–):

S + Cu(OH) 2 реакция не идет.

Кислоты (не окислители) (–).

Кислоты-окислители (+):

S + 2H 2 SO 4 (конц.) = 3SO 2 + 2H 2 O,

S + 2HNO 3 (разб.) = H 2 SO 4 + 2NO,

S + 6HNO 3 (конц.) = H 2 SO 4 + 6NO 2 + 2H 2 O.

В п р и р о д е сера встречается как в самородном состоянии, так и в виде соединений, важнейшими из которых являются пирит, он же железный, или серный, колчедан (FeS 2), цинковая обманка (ZnS), свинцовый блеск (PbS), гипс (CaSO 4 2H 2 O), глауберова соль (Na 2 SO 4 10H 2 O), горькая соль (MgSO 4 7H 2 O). Кроме того, сера входит в состав каменного угля, нефти, а также в различные живые организмы (в составе аминокислот). В организме человека сера концентрируется в волосах.

В л а б о р а т о р н ы х у с л о в и я х серу можно получить, используя окислительно-восстановительные реакции (ОВР), например:

H 2 SO 3 + 2H 2 S = 3S + 3H 2 O,

2H 2 S + O 2 2S + 2H 2 O.

В а ж н е й ш и е с о е д и н е н и я с е р ы

Сероводород (H 2 S) – бесцветный газ с удушающим неприятным запахом тухлых яиц, ядовит (соединяется с гемоглобином крови, образуя сульфид железа). Тяжелее воздуха, малорастворим в воде (2,5 объема сероводорода в 1 объеме воды). Связи в молекуле ковалентные полярные, sp 3 -гибридизация, молекула имеет угловое строение:

В химическом отношении сероводород достаточно активен. Он термически неустойчив; легко сгорает в атмосфере кислорода или на воздухе; легко окисляется галогенами, диоксидом серы или хлоридом железа(III); при нагревании взаимодействует с некоторыми металлами и их оксидами, образуя сульфиды:

2H 2 S + O 2 2S + 2H 2 O,

2H 2 S + 3O 2 2SO 2 + 2H 2 O,

H 2 S + Br 2 = 2HBr + S,

2H 2 S + SO 2 3S + 2H 2 O,

2FeCl 3 + H 2 S = 2FeCl 2 + S + 2HCl,

H 2 S + Zn ZnS + H 2 ,

H 2 S + CaO CaS + H 2 O.

В лабораторных условиях сероводород получают действием на сульфиды железа или цинка сильных минеральных кислот или необратимым гидролизом сульфида алюминия:

ZnS + 2HCl = ZnCl 2 + H 2 S,

Аl 2 SO 3 + 6HOH 2Al(OH) 3 + 3H 2 S.

Раствор сероводорода в воде – сероводородная вода, или сероводородная кислота . Слабый электролит, по второй ступени практически не диссоциирует. Как двухосновная кислота образует два типа солей – сульфиды и гидросульфиды :

например, Na 2 S – сульфид натрия, NaHS – гидросульфид натрия.

Сероводородная кислота проявляет все общие свойства кислот. Кроме того, сероводород, сероводородная кислота и ее соли проявляют сильную восстановительную способность. Например:

H 2 S + Zn = ZnS + H 2 ,

H 2 S + CuO = CuS + H 2 O,

Качественной реакцией на сульфид-ион является взаимодействие с растворимыми солями свинца; при этом выпадает осадок сульфида свинца черного цвета:

Pb 2+ + S 2– -> PbS,

Pb(NO 3) 2 + Na 2 S = PbS + 2NaNO 3 .

Оксид серы(IV) SO 2 – сернистый газ, сернистый ангидрид – бесцветный газ с резким запахом, ядовит. Кислотный оксид. Связи в молекуле ковалентные полярные, sp 2 -гибридизация. Тяжелее воздуха, хорошо растворим в воде (в одном объеме воды – до 80 объемов SO 2), образует при растворении сернистую кислоту , существующую только в растворе:

H 2 O + SO 2 H 2 SO 3 .

По кислотно-основным свойствам сернистый газ проявляет свойства типичного кислотного оксида, сернистая кислота также проявляет все типичные свойства кислот:

SO 2 + CaO CaSO 3 ,

H 2 SO 3 + Zn = ZnSO 3 + H 2 ,

H 2 SO 3 + CaO = CaSO 3 + H 2 O.

По окислительно-восстановительным свойствам сернистый газ, сернистая кислота и сульфиты могут проявлять окислительно-восстановительную двойственность (с преобладанием восстановительных свойств). С более сильными восстановителями соединения серы(IV) ведут себя как окислители:

С более сильными окислителями они проявляют восстановительные свойства:

В промышленности диоксид серы получают:

При горении серы:

Обжигом пирита и других сульфидов:

4FeS 2 + 11O 2 2Fe 2 O 3 + 8SO 2 ,

2ZnS + 3O 2 2ZnO + 2SO 2 .

К лабораторным методам получения относятся:

Действие сильных кислот на сульфиты:

Na 2 SO 3 + 2HCl = 2NaCl + SO 2 + H 2 O;

Взаимодействие концентрированной серной кислоты с тяжелыми металлами:

Cu + 2H 2 SO 4 (конц.) = СuSO 4 + SO 2 + 2H 2 O.

Качественные реакции на сульфит-ион – обесцвечивание «йодной воды» или действие сильных минеральных кислот:

Na 2 SO 3 + I 2 + 2NaOH = 2NaI + Na 2 SO 4 + H 2 O,

Ca 2 SO 3 + 2HCl = CaCl 2 + H 2 O + SO 2 .

Оксид серы(VI) SO 3 – триоксид серы, или серный ангидрид , – это бесцветная жидкость, которая при температуре ниже 17 °С превращается в белую кристаллическую массу. Ядовит. Существует в виде полимеров (мономерные молекулы существуют только в газовой фазе), связи в молекуле ковалентные полярные, sp 2 -гибридизация. Гигроскопичен, термически неустойчив. С водой реагирует с сильным экзо-эффектом. Реагирует с безводной серной кислотой, образуя олеум . Образуется при окислении сернистого газа:

SO 3 + H 2 O = H 2 SO 4 + Q ,

n n SO 3 .

По кислотно-основным свойствам является типичным кислотным оксидом:

SO 3 + H 2 O = H 2 SO 4 ,

SO 3 + CaO = CaSO 4 ,

По окислительно-восстановительным свойствам выступает сильным окислителем, обычно восстанавливаясь до SO 2 или сульфитов:

В чистом виде практического значения не имеет, является промежуточным продуктом при производстве серной кислоты.

Серная кислота – тяжелая маслянистая жидкость без цвета и запаха. Хорошо растворима в воде (с большим экзо-эффектом). Гигроскопична, ядовита, вызывает сильные ожоги кожи. Является сильным электролитом. Серная кислота образует два типа солей: сульфаты и гидросульфаты , которые проявляют все общие свойства солей. Сульфаты активных металлов термически устойчивы, а сульфаты других металлов разлагаются даже при небольшом нагревании:

Na 2 SO 4 не разлагается,

ZnSO 4 ZnO + SO 3 ,

4FeSO 4 2Fe 2 O 3 + 4SO 2 + O 2 ,

Ag 2 SO 4 2Ag + SO 2 + O 2 ,

HgSO 4 Hg + SO 2 + O 2 .

Раствор с массовой долей серной кислоты ниже 70 % обычно считается разбавленным; выше 70 % – концентрированным; раствор SO 3 в безводной серной кислоте называется олеум (концентрация триоксида серы в олеуме может достигать 65 %).

Разбавленная серная кислота проявляет все свойства, характерные для сильных кислот:

Н 2 SO 4 2H + + SO 4 2– ,

Н 2 SO 4 + Zn = ZnSO 4 + Н 2 ,

Н 2 SO 4 (разб.) + Cu реакция не идет,

Н 2 SO 4 + CaO = CaSO 4 + H 2 O,

CaCO 3 + Н 2 SO 4 = CaSO 4 + H 2 O + CO 2 .

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие металлы, неметаллы, а также некоторые органические вещества. Не окисляются под действием концентрированной серной кислоты железо, золото и металлы платиновой группы (правда, железо хорошо растворяется при нагревании в умеренно концентрированной серной кислоте с массовой долей 70 %). При взаимодействии концентрированной серной кислоты с другими металлами образуются сульфаты и продукты восстановления серной кислоты.

2Н 2 SO 4 (конц.) + Cu = CuSO 4 + SO 2 + 2H 2 O,

5Н 2 SO 4 (конц.) + 8Na = 4Na 2 SO 4 + H 2 S + 4H 2 O,

Н 2 SO 4 (конц.) пассивирует Fe, Al.

При взаимодействии с неметаллами концентрированная серная кислота восстанавливается до SO 2:

5Н 2 SO 4 (конц.) + 2Р = 2H 3 PO 4 + 5SO 2 + 2H 2 O,

2Н 2 SO 4 (конц.) + C = 2H 2 O + CO 2 + 2SO 2 .

Контактный метод получения серной кислоты состоит из трех стадий:

1) обжиг пирита:

4FeS 2 + 11O 2 2Fe 2 O 3 + 8SO 2 ;

2) окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия:

3) растворение SO 3 в серной кислоте с получением олеума:

SO 3 + H 2 O = H 2 SO 4 + Q ,

n SO 3 + H 2 SO 4 (конц.) = H 2 SO 4 n SO 3 .

Качественная реакция на сульфат-ион – взаимодействие с катионом бария, в результате чего выпадает белый осадок BaSO 4 .

Ba 2+ + SO 4 2– -> BaSO 4 ,

BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl.

Тест по теме «Сера и ее соединения»

1. Сера и кислород – это:

а) хорошие проводники электричества;

б) относятся к подгруппе халькогенов;

в) хорошо растворимы в воде;

г) имеют аллотропные модификации.

2. В результате реакции серной кислоты с медью можно получить:

а) водород; б) серу;

в) сернистый газ; г) сероводород.

3. Сероводород – это:

а) ядовитый газ;

б) сильный окислитель;

в) типичный восстановитель;

г) один из аллотропов серы.

4. Массовая доля (в %) кислорода в серном ангидриде равна:

а) 50; б) 60; в) 40; г) 94.

5. Оксид серы(IV) является ангидридом:

а) серной кислоты;

б) сернистой кислоты;

в) сероводородной кислоты;

г) тиосерной кислоты.

6. На сколько процентов уменьшится масса гидросульфита калия после прокаливания?

в) гидросульфит калия термически устойчив;

7. Сместить равновесие в сторону прямой реакции окисления сернистого газа в серный ангидрид можно:

а) используя катализатор;

б) увеличивая давление;

в) уменьшая давление;

г) понижая концентрацию оксида серы(VI).

8. При приготовлении раствора серной кислоты необходимо:

а) наливать кислоту в воду;

б) наливать воду в кислоту;

в) порядок приливания не имеет значения;

г) серная кислота не растворяется в воде.

9. Какую массу (в г) декагидрата сульфата натрия необходимо добавить к 100 мл 8%-го раствора сульфата натрия (плотность равна 1,07 г/мл), чтобы удвоить массовую долю соли в растворе?

а) 100; б) 1,07; в) 30,5; г) 22,4.

10. Для определения сульфит-иона в качественном анализе можно использовать:

а) катионы свинца;

б) «йодную воду»;

в) раствор марганцовки;

г) сильные минеральные кислоты.

Ключ к тесту

б, г в а, в б б г б, г а в б, г

Задачи и упражнения на серу и ее соединения

Ц е п о ч к и п р е в р а щ е н и й

1. Сера -> сульфид железа(II) -> сероводород -> сернистый газ -> триоксид серы > серная кислота > оксид серы(IV).

3. Серная кислота -> сернистый газ -> сера -> диоксид серы -> триоксид серы -> серная кислота.

4. Сернистый ангидрид -> сульфит натрия -> гидросульфит натрия -> сульфит натрия -> сульфат натрия.

5. Пирит -> сернистый газ -> серный ангидрид -> серная кислота -> оксид серы(IV) -> сульфит калия -> сернистый ангидрид.

6. Пирит > сернистый газ -> сульфит натрия -> сульфат натрия -> сульфат бария -> сульфид бария.

7. Сульфид натрия -> А -> В -> С -> D -> сульфат бария (все вещества содержат серу; первая, вторая и четвертая реакции – ОВР).

У р о в е н ь А

1. Через раствор, содержащий 5 г едкого натра, пропустили 6,5 л сероводорода. Определите состав полученного раствора.

Ответ. 7 г NaHS, 5,61 г H 2 S.

2. Какую массу глауберовой соли необходимо добавить к 100 мл 8%-го раствора сульфата натрия (плотность раствора равна 1,07 г/мл), чтобы удвоить массовую долю вещества в растворе?

Ответ. 30,5 г Na 2 SO 4 10H 2 O.

3. К 40 г 12%-го раствора серной кислоты добавили 4 г серного ангидрида. Вычислите массовую долю вещества в образовавшемся растворе.

Ответ. 22 % H 2 SO 4 .

4. Смесь сульфида железа(II) и пирита, массой 20,8 г, подвергли длительному обжигу, при этом образовалось 6,72 л газообразного продукта (н.у.). Определите массу твердого остатка, образовавшегося при обжиге.

Ответ. 16 г Fe 2 O 3 .

5. Имеется смесь меди, углерода и оксида железа(III) с молярным соотношением компонентов 4:2:1 (в порядке перечисления). Какой объем 96%-й серной кислоты (плотность равна 1,84 г/мл) нужен для полного растворения при нагревании 2,2 г такой смеси?

Ответ. 4,16 мл раствора H 2 SO 4 .

6. Для окисления 3,12 г гидросульфита щелочного металла потребовалось добавить 50 мл раствора, в котором молярные концентрации дихромата натрия и серной кислоты равны 0,2 моль/л и 0,5 моль/л соответственно. Установите состав и массу остатка, который получится при выпаривании раствора после реакции.

Ответ . 7,47 г смеси сульфатов хрома (3,92 г) и натрия (3,55 г).

У р о в е н ь Б

(задачи на олеум)

1. Какую массу триоксида серы надо растворить в 100 г 91%-го раствора серной кислоты, чтобы получить 30%-й олеум?

Решение

По условию задачи:

m (H 2 SO 4) = 100 0,91 = 91 г,

m (H 2 O) = 100 0,09 = 9 г,

(H 2 O) = 9/18 = 0,5 моль.

Часть добавленного SO 3 (m 1) пойдет на реакцию с H 2 O:

H 2 O + SO 3 = H 2 SO 4 .

По уравнению реакции:

(SO 3) = (H 2 O) = 0,5 моль.

m 1 (SO 3) = 0,5 80 = 40 г.

Вторая часть SO 3 (m 2) пойдет на создание концентрации олеума. Выразим массовую долю олеума:

m 2 (SO 3) = 60 г.

Суммарная масса триоксида серы:

m (SO 3) = m 1 (SO 3) + m 2 (SO 3) = 40 + 60 = 100 г.

Ответ . 100 г SO 3 .

2. Какую массу пирита необходимо взять для получения такого количества оксида серы(VI), чтобы, растворив его в 54,95 мл 91%-го раствора серной кислоты (плотность равна 1,82 г/см 3), получить 12,5%-й олеум? Выход серного ангидрида считать за 75 %.

Ответ . 60 г FeS 2 .

3. На нейтрализацию 34,5 г олеума расходуется 74,5 мл 40%-го раствора гидроксида калия (плотность равна 1,41 г/мл). Сколько молей серного ангидрида приходится на 1 моль серной кислоты в этом олеуме?

Ответ . 0,5 моль SO 3 .

4. При добавлении оксида серы(VI) к 300 г 82%-го раствора серной кислоты получен олеум с массовой долей триоксида серы 10%. Найдите массу использованного серного ангидрида.

Ответ . 300 г SO 3 .

5. При добавлении 400 г триоксида серы к 720 г водного раствора серной кислоты получен олеум с массовой долей 7,14 %. Найдите массовую долю серной кислоты в исходном растворе.

Ответ . 90 % H 2 SO 4 .

6. Найдите массу 64%-го раствора серной кислоты, если при добавлении к этому раствору 100 г триоксида серы получается олеум, содержащий 20 % триоксида серы.

Ответ . 44,4 г раствора H 2 SO 4 .

7. Какие массы триоксида серы и 91%-го раствора серной кислоты необходимо смешать для получения 1 кг 20%-го олеума?

Ответ . 428,6 г SO 3 и 571,4 г раствора H 2 SO 4 .

8. К 400 г олеума, содержащего 20 % триоксида серы, добавили 100 г 91%-го раствора серной кислоты. Найдите массовую долю серной кислоты в полученном растворе.

Ответ . 92 % H 2 SO 4 в олеуме.

9. Найдите массовую долю серной кислоты в растворе, полученном при смешивании 200 г 20%-го олеума и 200 г 10%-го раствора серной кислоты.

Ответ . 57,25 % H 2 SO 4 .

10. Какую массу 50%-го раствора серной кислоты необходимо добавить к 400 г 10%-го олеума для получения 80%-го раствора серной кислоты?

Ответ . 296,67 г 50%-го раствора H 2 SO 4 .

Ответ . 114,83 г олеума.

К а ч е с т в е н н ы е з а д а ч и

1. Бесцветный газ А с резким характерным запахом окисляется кислородом в присутствии катализатора в соединение В, представляющее собой летучую жидкость. Вещество В, соединяясь с негашеной известью, образует соль С. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – SO 2 , B – SO 3 , C – CaSO 4 .

2. При нагревании раствора соли А образуется осадок В. Этот же осадок образуется при действии щелочи на раствор соли А. При действии кислоты на соль А выделяется газ С, обесцвечивающий раствор перманганата калия. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – Ca(HSO 3) 2 , B – CaSO 3 , C – SO 2 .

3. При окислении газа А концентрированной серной кислотой образуется простое вещество В, сложное вещество С и вода. Растворы веществ А и С реагируют между собой с образованием осадка вещества В. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – H 2 S, B – S, C – SO 2 .

4. В реакции соединения двух жидких при обычной температуре оксидов А и В образуется вещество С, концентрированный раствор которого обугливает сахарозу. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – SO 3 , B – H 2 O, C – H 2 SO 4 .

5. В вашем распоряжении имеются сульфид железа(II), сульфид алюминия и водные растворы гидроксида бария и хлороводорода. Получите из этих веществ семь различных солей (без использования ОВР).

Ответ . Соли: AlCl 3 , BaS, FeCl 2 , BaCl 2 , Ba(OH)Cl, Al(OH)Cl 2 , Al(OH) 2 Cl.

6. При действии концентрированной серной кислоты на бромиды выделяется сернистый газ, а на йодиды – сероводород. Напишите уравнения реакций. Объясните разницу в характере продуктов в этих случаях.

Ответ . Уравнения реакций:

2H 2 SO 4 (конц.) + 2NaBr = SO 2 + Br 2 + Na 2 SO 4 + 2H 2 O,

5H 2 SO 4 (конц.) + 8NaI = H 2 S + 4I 2 + 4Na 2 SO 4 + 4H 2 O.

1 См.: Лидин Р.А. «Справочник по общей и неорганической химии». М.: Просвещение, 1997.

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

Продолжение следует