Про психологию. Учения и методики

Континентальные рифты. Распространение срединно-океанических рифтовых зон на окраинах континентов

РИФТ (а. rift; н. Rift; ф. rift; и. rift), рифтовая зона, — крупная полосовидная (в плане) зона горизонтального растяжения земной коры , выраженная в её верхней части в виде одного или нескольких сближенных линейных грабенов и сопряжённых с ними блоковых структур, ограниченных и осложнённых преимущественно продольными разломами типа наклонных сбросов и раздвигов . Протяжённость рифта — многие сотни и более тысячи км, ширина — обычно десятки км. В рельефе рифты, как правило, выражены узкими и глубокими удлинёнными котловинами или рвами с относительно крутыми склонами.

Рифты в периоды их активного развития (рифтогенеза) характеризуются сейсмичностью (с малоглубинными очагами землетрясений) и высоким тепловым потоком. В ходе развития рифтов в них могут накапливаться мощные толщи или , в которых заключены крупные нефти , руд различных металлов и др. Аномально прогретая и отличающаяся пониженной вязкостью верхняя часть мантии под развивающимся рифтами обычно испытывает воздымание (т.н. мантийный диапир) и некоторое растекание в стороны, а вышележащая кора — некоторое сводообразное выпучивание. Эти процессы одни исследователи считают основной причиной образования рифтов, другие полагают, что местное воздымание верхней мантии и коры лишь благоприятствует возникновению рифта и предопределяет его локализацию (или даже является его следствием), тогда как основной причиной рифтообразования является региональное (или даже глобальное?) растяжение коры. При особенно сильном горизонтальном растяжении древняя континентальная кора в пределах рифта подвергается полному разрыву и между её раздвинутыми блоками в этом случае за счёт поступающего из верхней мантии магматического материала основного состава формируется новая маломощная кора океанического типа. Этот процесс, свойственный рифтам океанов , называется спредингом .

По характеру глубинного строения коры в рифтах и обрамляющих их зонах различаются главный категории рифтов — внутриконтинентальные, межконтинентальные, периконтинентальные и внутриокеанические (рис.).

Внутриконтинентальные рифты обладают корой континентального типа, утонённой по сравнению с обрамляющими областями. Среди них по особенностям тектонического положения выделяются рифты древних платформ (эпиплатформенные или интракратонные) сводово-вулканического типа (например, Кенийский, Эфиопский, рис. 1) и слабо- или невулканические щелевого типа (например, Байкальский, Танганьикский) (рис. 2), а также рифты и рифтовые системы подвижных поясов, которые периодически возникают и затем преобразуются в ходе их геосинклинального развития и главным образом формируются на постгеосинклинальных этапах их эволюции (например, рифтовая система Бассейнов и Хребтов в Кордильерах, рис. 3). Масштаб растяжения во внутриконтинентальных рифтах — наименьший по сравнению с другими их категориями (несколько км — первые десятки км). Если континентальная кора в зоне рифтов подвергается полному разрыву, внутриконтинентальные рифты превращаются в межконтинентальные (рифты Красного моря, Аденского, Калифорнийского заливов; рис. 4).

Внутриокеанические рифты (т.н. срединно-океанические хребты) обладают корой океанического типа как в их осевых зонах (зонах современного спрединга), так и на их флангах (рис. 5). Подобные рифтовые хребты могут возникать либо в результате дальнейшего развития межконтинентальных рифтов, либо в пределах более древних океанических областей (например, в Тихом океане). Масштаб горизонтального расширения во внутриокеанических рифтах — наибольший (до первых тысяч км). Для этих рифтов характерно наличие пересекающих их поперечных разрывов (трансформных разломов), как бы смещающих в плане соседние отрезки этих рифтовых зон относительно друг друга. Все современные внутриокеанические, межконтинентальные, а также значительная часть внутриконтинентальных рифтов непосредственно связаны между собой на поверхности Земли и образуют рифтов мировую систему .

Периконтинентальные рифты и рифтовые системы, свойственные окраинам и Индийского океанов , обладают сильно утонённой континентальной корой, которая сменяет океаническую в сторону внутренней части океана (рис. 6). Периконтинентальные рифтовые зоны и системы формировались на ранних стадиях эволюции впадин вторичных океанов. Межконтинентальные и внутриокеанические рифты возникали, по крайней мере, с середины мезозоя, а возможно, и в более ранние эпохи. Внутриконтинентальные рифты в пределах древних платформ формировались начиная с протерозоя и впоследствии нередко испытывали регенерацию (т.н. ). Рифтоподобные линейные зоны растяжения, позднее подвергавшиеся сжатию, возникали уже в (зеленокаменные пояса).

Происхождение Байкала до сих пор вызывает научные споры. Возраст озера учёные традиционно определяют в 25?35 млн лет. Этот факт также делает Байкал уникальным природным объектом, так как большинство озёр, особенно ледникового происхождения, живут в среднем 10?15 тыс. лет, а потом заполняются илистыми осадками и заболачиваются. Однако существует также версия о молодости Байкала, выдвинутая доктором геолого-минералогических наук Александром Татариновым в 2009 году, которая получила косвенные подтверждения во время второго этапа экспедиции «Миров» на Байкале. В частности, деятельность грязевых вулканов на дне Байкала позволяет учёным предполагать, что современной береговой линии озера всего лишь 8 тысяч лет, а глубоководной части -- 150 тысяч лет.

Одни исследователи объясняют образование Байкала его расположением в зоне трансформного разлома, другие предполагают наличие под Байкалом мантийного плюма, третьи объясняют образование впадины пассивным рифтингом в результате коллизии Евразии и Индостана. Как бы то ни было, преобразование Байкала продолжается до сих пор -- в окрестностях озера постоянно происходят землетрясения. Есть предположения о том, что проседание впадины связано с образованием вакуумных очагов вследствие излияния базальтов на поверхность (четвертичный период).

П.А. Кропоткин (1875) считал, что образование впадины связано с расколами земной коры. И.Д. Черский, в свою очередь, считал генезис Байкала как прогиб земной коры (в силуре). В настоящее время получило широкое распространение теория (гипотеза) «рифта». По этой гипотезе, в результате сжатия земной коры образуется огромное сводовое поднятие, а растяжение, сменяющее впоследствии сжатие, вызывает проседание верхней части свода по оси.

Н. А. Флоренсов рассматривает впадину Байкала как центральное, крупнейшее и древнейшее звено Байкальской рифтовой зоны, возникшей и развивающейся одновременно с мировой рифтовой системой. «Корни» впадины, рассекая всю земную кору, уходят в верхнюю мантию, т. е на глубину 50-60 км. Под впадиной Байкала и, по-видимому, под всей рифтовой зоной происходит аномальный разогрев недр, причина которого пока неясна.

Легкое разогретое вещество, всплывая, приподняло над собой земную кору, местами взломав ее на всю толщу и образовав основу современных хребтов, окружающих Байкал. Одновременно разогретое вещество растекалось под корой в стороны, что создало горизонтальные силы растяжения. Растяжение коры вызвало раскрытие древних и образование новых разломов, опускание по ним отдельных блоков и оформление межгорных впадин - рифтовых долин - во главе с гигантской впадиной Байкала.

При исследовании донных отложений Байкала с помощью специальных поршневых вакуумных трубок ученым удалось в различных районах озера отобрать колонки донных отложений длиной 10-12 м. Поверхностные слои донных отложений во всех котловинах представлены тонкозернистыми алевритовыми илами. Но в нижней части колонок, на глубине 8-10 м от поверхности дна, в разных местах оказались песчаные отложения, которые обычно формируются на мелководных участках озера или в руслах рек, в их дельтах и на придельтовых территориях при интенсивном перемешивании донных наносов. Однако ничего подобного на глубинах в 1000-1600 м, где найдены песчаные отложения, в настоящее время в Байкале нет. На основании этого и родилась гипотеза, что Байкал с его большими глубинами возник совсем недавно, а некоторые исследователи песчаные отложения под слоем ила стали называть добайкальскими. Скорость осадконакопления в открытом Байкале в настоящее время равна в среднем 4 см за 1000 лет. Следовательно, нетрудно подсчитать и время, когда Байкал еще не был Байкалом, а на его месте были мелководные водоемы или водотоки, - всего 200-250 тыс. лет назад. В геологическом масштабе времени это совсем недавно, практически на глазах человека.

Исследования же палеонтологов и палеолимнологов показывают, что на Байкале, в разных районах побережья, довольно широко распространены озерные отложения третичного времени со специфической ископаемой озерной фауной - моллюсками, остатками растений и других организмов. Возраст этих находок и отложений не менее 20-25 млн. лет. Следовательно, уже тогда на месте современного Байкала существовал довольно водоем озерного типа со значительными глубинами. Возможно, очертания его не совсем точно совпадали с контурами современного озера - например, в южной котловине он был несколько шире. В то время, вероятно, было довольно глубокое озеро в Баргузинской долине и серия озер в Тункинской впадине. Современные же очертания могли сформироваться сравнительно недавно, может быть, в ледниковый или послеледниковый период, потому что развитие котловины Байкала, как и всего Байкальского рифта, продолжается - об этом свидетельствуют многочисленные ежегодные землетрясения.

А песчаные отложения в толще донных осадков на больших глубинах могли образоваться при селевых паводках, мутьевых потоках и подводных оползнях. Например, такие же песчаные отложения, принесенные мутьевыми потоками и подводными оползнями, найдены в Тихом океане на расстоянии нескольких сот километров от берега Калифорнии. Необходимы более тщательные исследования, возможно, с бурением донных осадков в районе больших глубин, для того чтобы проследить историю развития котловины и эволюцию животного и растительного мира Байкала.

Рифты как глобальные геотектонические элементы - это характерная структура растяжения земной коры. Под понятие рифтов подходят также узкие формы рельефа - борозды (“грабены”), еще не скомпенсированные осадками и отложениями; крупные и широкие впадины с достаточно взаимоудаленными бортами; куполовидные, или протянувшиеся в виде хребтов, системы поднятий, осложненные осевым грабеном (например, рифты в центральных частях океанов и в Восточной Африке). Считается, что все это есть лишь различные временные стадии формирования рифтовых структур, которые обнаружены в настоящее время в океанах и на континентах. Возраст определяется по отложениям и осадкам.

Первое место среди планетарных рифтовых систем занимает образовавшаяся в течение кайнозоя и развивающаяся по настоящее время Мировая система рифтов (МСР), обнаруженная в 1957 году, которая протягивается на длину свыше 60 тыс. км под водами Мирового океана, и заходящая рядом своих ответвлений также на континент. МСР представляют собой широкие (до тысячи километров и более) поднятия, возвышающиеся над дном на 3,5 - 4 километра и протягивающиеся на тысячи километров. К осевым частям хребтов приурочены активные рифтовые зоны, состоящие из системы узких грабенов (рифтовых ущелий типа Байкала), обрамленных рифтовыми горными грядами типа Байкальского, Баргузинского и других хребтов, окружающих Байкал.

К другим рифтовым (планетарного масштаба) относятся рифты, приуроченные к континентам (кроме оговоренных выше) - например, Рейнский грабен (длина около 600 км) или Байкальская рифтовая зона (длина более 2,5 тыс. км). Современные рифтовые зоны континентов имеют много общего с рифтами срединноокеанических хребтов, принадлежащих МСР. Их возникновение также связано с процессами подъема глубинного вещества, сводового поднятия, горизонтального растяжения земной коры под его напором, утонением коры и подъемом поверхности Мохоровича. Континентальные рифтовые системы (КСР) также образуют ветвящиеся в плане протяженные системы (подобно МСР), но гораздо менее выраженные в рельефе, поэтому некоторые их звенья кажутся изолированными. На первый взгляд трудно назвать аналогом Байкала рифтовое ущелье, погребенное под толщей воды в 3-3,5 километра. Происхождение Байкальской и океанических рифтовых зон одинаково по своей сути. Большинство КСР имеют кайнозойский возраст образования. Байкальский рифт образовался в конце палеогена. В поперечном сечении рифтовая зона представляет собой систему ступенчато погружающихся к осевой части скошенных под различными углами блоков. Поверхности раздела обычно являются крутопадающими сбросами.

Земная кора континентальных рифтов характеризуется заметным утонением до 20-30км, подъемом поверхности Мохоровича и увеличением мощности осадочного слоя, поэтому в разрезе земная кора имеет форму двояковогнутой линзы. В изучении рифтовых структур многое еще не выяснено и не изучено. Является ли рифтообразование процессом, присущим только мезокайнозойским эрам? Возник ли этот процесс лишь в последующие 100-150 млн. лет жизни Земли, или на его долю следует отнести преобразование ее лика и в более ранние эпохи? На эти вопросы еще не даны ясные ответы.

Процессы рифтообразования следует рассматривать как одну из характерных черт развития земной коры, имевшей место в течение всей истории ее жизни. Они обусловлены горизонтальным растяжением земной коры, приводящей к вертикальному опусканию. Блоков земной коры и поднятию на дневную поверхность вещества мантии. В развитии рифтовых зон имеет место определенная стадийность. На первой стадии вследствие подтекания разуплотненного вещества мантии в земной коре образуется куполообразное или линейно-протяженное поднятие, затем за счет растяжения идет формирование грабеновых прогибов в наиболее приподнятых их частях. На последующих стадиях рифтовые зоны могут служить осевыми частями более крупных опусканий, или, в случае смены растяжения сжатием, перерождаются в складчатые приподнятые сооружения геосинклинального типа.

Распространение рифтовых зон не имеет строго линейного характера. Отдельные их части (элементы) взаимно смещаются в поперечном направлении по трансформным разломам. Изучение современных и древних рифтовых зон в океане и на континентах позволит получить ясное представление о строении и геологической истории этих крупных геологических планетарных структур, а также о нефтегазоносности многокилометровых осадочных пород, заполняющих многие рифтовые впадины. Озеро Байкал как относительно молодая рифтовая зона при ее дальнейшем изучении способна предоставить еще более обширный материал для более глубокого понимания сущности геологических, магматических процессов в области рифтовых зон.

Рис. 5.1. Глобальная система современных континентальных и океанских рифтов, главные зоны субдукции и коллизии, пассивные (внутриплитные) континентальные окраины.
Рифтовые зоны: Срединно-Атлантическая (СА), Американо-Антарктическая (Ам-А), Африкано-Антарктическая (Аф-А), Юго-Западная Индоокеанская (ЮЗИ), Аравийско-Индийская (А-И), Восточно-Африканская (ВА), Красноморская (Кр), Юго-Восточная Индоокеанская (ЮВИ), Австрало-Антарктическая (Ав-А), Южно-Тихоокеанская (ЮТ), Восточно-Тихоокеанская (ВТ), Западно-Чилийская (34), Галапагосская (Г), Калифорнийская (Кл), Рио-Гранде - Бассейнов и Хребтов (БХ), Горда-Хуан-де-Фука (ХФ), Нансена-Гаккеля (НГ, см. рис. 5.3), Момская (М), Байкальская (Б), Рейнская (Р). Зоны субдукции: 1 - Тонга-Кермадек; 2 - Новогебридская; 3 - Соломон; 4 - Новобританская; 5 - Зондская; 6 - Манильская; 7 - Филиппинская; 8 - Рюкю; 9 - Марианская; 10 - Идзу-Бонинская; 11 - Японская; 12 - Курило-Камчатская; 13 - Алеутская:, 14 - Каскадных гор; 15 - Центральноамериканская; 16 - Малых Антил; 17 - Андская; 18 - Южных Антил (Скотия); 19 - Эоловая (Калабрийская); 20 - Эгейская (Критская); 21 - Мекран.
а - океанские рифты (зоны спрединга) и трансформные разломы; б - континентальные рифты; в - зоны субдукции: островодужные и окраинно-материковые двойная линия); г - зоны коллизии; д - пассивные континентальные окраины; е - трансформные континентальные окраины (в том числе пассивные); ж - векторы относительных движений литосферных плит, по Дж. Минстеру, Т. Джордану (1978) и К. Чейзу (1978), с дополнениями; в зонах спрединга - до 15-18 см/год в каждую сторону, в зонах субдукции - до 12 см/год

Рис. 5.2. Геометрическая правильность размещения глобальной системы современных рифтов относительно оси вращения Земли, по Е.Е. Милановскому, А.М. Никишину (1988):
1 - кайнозойские оси рифтинга, главным образом активные; 2 - океанская литосфера кайнозойского возраста; 3 - то же, мезозойского возраста; 4 - области с континентальной литосферой; 5 - конвергентные границы
Рис. 5.3. Юго-восточное окончание океанской рифтовой зоны Нансена - Гаккеля и продолжающие ее сейсмически активные разломы, разделяющие Евразийскую и Северо-Американскую литосферные плиты. По Л.М. Парфенову и др. (1988). Внизу - фокальные механизмы сейсмических очагов на этой активной границе, по Д. Куку и др. (1986):
1 - зоны спрединга (НГ - зона Нансена-Гаккеля); 2 - глубоководные желоба (зоны субдукции); 3 - трансформные разломы; 4 - взбросы; 5 - сбросы и сдвиги; 6 - зоны рассеянного рифтинга; 7 - движение литосферных плит и микроплит; 8 - фокальные механизмы сейсмических очагов; 9 - суша в пределах Евразийской (а) и Северо-Американской (б) плит. Литосферные плиты и микроплиты: ЕА - Евразийская; СА - Северо-Американская; Т - Тихоокеанская; ЗБ - Забайкальская; Ам - Амурская; Ох - Охотоморская

Современная тектоническая активность распределена крайне неравномерно и сосредоточена главным образом на границах литосферных плит. Двум главным видам этих границ (см. гл. 3.1 соответствуют и главные геодинамические обстановки. На дивергентных границах развивается рифтогенез, которому посвящена настоящая глава, здесь же мы рассмотрим активность трансформных границ, поскольку они связаны в первую очередь с рифтовыми зонами океанов. Конвергентное взаимодействие литосферных плит выражается субдукцией, обдукцией и коллизией (см. гл. 6). Сведения о сравнительно слабых, но важных по своим геологическим последствиям внутриплитных тектонических процессах будут даны в главе 7.

Термином рифтовая долина (англ., rift - расщелина) Дж. Грегори в конце прошлого века обозначил ограниченные сбросами грабены Восточной Африки, образующиеся в условиях растяжения. Впоследствии Б. Уиллис противопоставил их рампам - грабенам, зажатым между встречными взбросами. Понятие, имевшее вначале главным образом структурное содержание, в дальнейшем, особенно в последние десятилетия, обогащалось представлениями о геологических условиях и вероятных глубинных механизмах формирования этих линейных зон растяжения, о характерных магматических и осадочных образованиях и, таким образом, наполнялось генетическим содержанием. Складывалось современное понимание рифтогенеза, которое четверть века назад вошло в концепцию тектоники плит как один из важнейших ее элементов. При этом оказалось, что большинство рифтовых зон (в новом, широком их понимании) находится в океанах, однако там рифты как структуры, контролируемые сбросами, имеют подчиненное значение, а главным способом реализации растягивающих напряжений служит раздвиг.

5.1. Глобальная система рифтовых зон

Большинство современных рифтовых зон связаны между собой, образуя глобальную систему, протянувшуюся через континенты и океаны (рис. 5.1). Осознание единства этой системы, охватившей весь земной шар, побудило исследователей искать планетарные по своему масштабу механизмы тектогенеза и способствовало рождению «новой глобальной тектоники», как в конце 60-х годов называли концепцию тектоники литосферных плит.

В системе рифтовых зон Земли большая ее часть (около 60 тыс. км) находится в океанах, где выражена срединно-океанскими хребтами (см. рис. 5.1), их перечень дается в гл. 10. Эти хребты продолжают один другой, а в нескольких местах связаны между собой «тройными сочленениями»: на соединениях Западно-Чилийского и Галапагосского хребтов с Восточно-Тихоокеанским, на юге Атлантического океана и в центральной части Индийского. Пересекая границу с пассивными континентальными окраинами, океанские рифты продолжаются континентальными. Такой переход прослежен к югу от тройного сочленения Аденского и Красноморского океанских рифтов с рифтом долины Афар: вдоль нее с севера на юг океанская кора выклинивается и начинается континентальная Восточно-Африканская зона. В Арктическом бассейне океанский хребет Гаккеля продолжается континентальными рифтами на шельфе моря Лаптевых, а затем сложной неотектонической зоной, включающей Момский рифт (см. рис. 5.3).

Там, где срединно-океанские хребты подходят к активной континентальной окраине, они могут поглощаться в зоне субдукции. Так, у Андской окраины заканчиваются Галапагосский и Западно-Чилийский хребты. Другие соотношения демонстрирует Восточно-Тихоокеанское поднятие, над продолжением которого на надвинутой Северо-Американской плите образовался континентальный рифт Рио-Гранде. Подобным образом океанские структуры Калифорнийского залива (представляющие собой, по-видимому, ответвление главной рифтовой зоны) продолжаются континентальной системой Бассейнов и Хребтов.

Отмирание рифтовых зон по простиранию носит характер постепенного затухания или бывает приурочено к трансформному разлому, как, например, на окончании хребтов Хуан-де-Фука и Американо-Антарктического. Для Красноморского рифта окончанием служит Левантийский сдвиг.

Охватывая почти всю планету, система рифтовых зон кайнозоя обнаруживает геометрическую правильность и определенным образом ориентирована относительно оси вращения геоида (рис. 5.2). Рифтовые зоны образуют почти полное кольцо вокруг Южного полюса на широтах 40-60° и отходят от этого кольца меридионально с интервалом около 90° тремя затухающими к северу поясами: Восточно-Тихоокеанским, Атлантическим и Индоокеанским. Как показали Е.Е. Милановский и А.М. Никишин (1988), может быть, с некоторой условностью намечен на соответствующем месте и четвертый, Западно-Тихоокеанский пояс, который прослеживается как совокупность задуговых проявлений рифтогенеза. Нормальное развитие рифтового пояса здесь было подавлено интенсивным западным смещением и субдукцией Тихоокеанской плиты.

Под всеми четырьмя поясами до глубин в первые сотни километров томография обнаруживает отрицательные аномалии скоростей и повышенное затухание сейсмических волн, что объясняют восходящим током разогретого вещества мантии (см. рис. 2.1). Правильность в размещении рифтовых зон сочетается с глобальной асимметрией как между полярными областями, так и относительно Тихоокеанского полушария.

Закономерна и ориентировка векторов растяжения в рифтовых зонах, преобладают близмеридиональные и близширотные. Последние максимальны в приэкваториальных областях, убывая вдоль хребтов как в северном, так и в южном направлении.

Вне глобальной системы находятся лишь немногие из крупных рифтов. Это система Западной Европы (включающая Рейнский грабен), а также системы Байкальская (рис. 5.3) и Фэнвей (Шаньси), приуроченные к разломам северо-восточного простирания, активность которых, как полагают, поддерживается коллизией континентальных плит Евразии и Индостана.

Рифтовыми зонами называют весьма протяженные (длиной в многие сотни и тысячи километров) планетарного масштаба полосовидные тектонические зоны, распространенные в пределах континентов и океанах, в которых происходит подъем глубинного (мантийного) материала, сопровождаемый его распространением в стороны, что приводит к более или менее значительному поперечному растяжению в верхних этажах земной коры. Важнейшим структурным выражением процесса растяжения на поверхности Земли обычно является образование глубокого и относительно узкого (от нескольких километров до нескольких десятков километров), нередко ступенчатого грабена (симметричного или асимметричного), ограниченного нормальными сбросами большой глубины заложения (собственно рифта или «рифтовой долины»), либо нескольких (иногда целой серии) подобных грабенов. Дно грабенов также бывает рассечено сбросами и трещинами растяжения. Погружение дна грабенов относительно их бортов, как правило, опережает аккумуляцию в них осадочного материала, хотя последняя во многих случаях дополняется заполнением их вулканическими продуктами, и поэтому рифты обычно имеют отчетливое прямое выражение в рельефе в виде линейных депрессий. По большей части рифты обрамляются с обеих сторон или хотя бы с одной стороны асимметричными поднятиями (пологими полусводами, односторонними горстами и реже горстами), в той или иной степени разбитыми, как и грабены, продольными, диагональными и поперечными трещинами, сбросами и нередко осложненными второстепенными узкими грабенами. В некоторых случаях поднятие возникает также внутри рифта, расщепляя его на две ветви. Отношение объемов этих поднятий и рифтовых впадин отражает соотношения масштабов воздымания и растяжения в той или иной рифтовой зоне. Некоторые из них, в особенности океанические, характеризуются существенной ролью поперечных сдвиговых смещений, в частности, по зонам так называемых трансформирующих разломов.

Рифтовые зоны в целом и в первую очередь осевые грабены (рифты) обладают повышенной или даже очень высокой сейсмичностью, причем очаги землетрясений лежат на глубинах от первых километров до 40-50 км, а план напряжений в очагах характеризуется господством максимальных субгоризонтально направленных растяжений, приблизительно перпендикулярных к оси рифтовой зоны. Рифтовым зонам, за редкими исключениями, свойствен повышенный тепловой поток, величина которого в общем возрастает по мере приближения к их оси, нередко достигая 2-3, а иногда даже 4-5 единиц теплового потока. Развитие большинства рифтовых зон сопровождается проявлениями гидротермальной активности и магматизма и, в частности, вулканическими извержениями, питаемыми из подкоровых, а в некоторых материковых рифтовых зонах, может быть, и из внутрикоровых магматических очагов. Однако масштабы магматического процесса, объемы его продуктов, их состав, приуроченность к тем или иным стадиям рифтогенеза и к тем или иным участкам рифтовой зоны варьируют в чрезвычайно широких пределах. Наряду с рифтовыми зонами, в которых магматическая деятельность сопутствовала всем стадиям их развития, а ее продукты покрывают почти всю их площадь и достигают объемов в сотни тысяч кубических километров, существуют рифтовые зоны, где она проявлялась локально, спорадически или совершенно отсутствовала.

Рифтовые зоны океанов характеризуются контрастным полосовидным билатерально-симметричным магнитным полем, согласно господствующим представлениям создающимся в процессе рифтогенеза и как бы запечатляющим отдельные его стадии. Однако магнитное поле континентальных рифтовых зон в значительной мере отражает особенности строения их фундамента и подверглось лишь некоторой перестройке в процессе рифтообразования. Рифтовые зоны обычно, хотя и не всегда, характеризуются гравитационными минимумами в поле аномалий Буге, но в осевых частях некоторых из них выделяются узкие максимумы, вызванные подъемом основного и ультраосновного материала. Однако формы, размеры гравианомалий и характер факторов, вызывающих возмущения, могут существенно различаться. Как правило, рифтовые зоны близки к состоянию изостатического равновесия.

Земная кора в современных рифтовых зонах несколько утоньшена по сравнению со смежными областями, а верхняя часть мантии, по крайней мере непосредственно ниже поверхности М, во многих из них отличается аномально низкой скоростью прохождения продольных сейсмических волн (7,2-7,8 км/с) и несколько пониженной плотностью и вязкостью, что, по-видимому, обусловлено повышенным тепловым режимом и в ряде случаев возникновением очагов селективного плавления в верхах мантии. Эти линзы или «подушки» разуплотненного мантийного материала, вероятно, представляют собой выступы кровли астеносферы, достигающие под современными рифтовыми зонами подошвы земной коры. Рифтовые зоны редко существуют изолированно; как правило, они образуют более или менее сложные сочетания. Способы «стыковки» соседних рифтовых зон и общий план их группировки могут быть весьма разнообразными и при этом существенно различаются у континентальных и океанических зон. Сочетания ряда тесно связанных между собой в пространстве приблизительно одновозрастных рифтовых зон сходного или различного типа мы называем рифтовыми системами. Этот термин может применяться к любым комбинациям рифтовых зон, независимо от их размеров, сложности и рисунка, но главным образом используется в отношении таких их сочетаний, которые характеризуются присутствием различно ориентированных рифтовых зон, древовидным рисунком или наличием нескольких полуизолированных ветвей, не полосовидным, а близким к изометричному общим контуром. В тех случаях, когда рифтовые зоны (или их системы), сочетаясь между собой, образуют в совокупности линейно вытянутые сооружения протяженностью в несколько или даже много тысяч километров, мы называем их рифтовыми поясами (по аналогии с соизмеримыми с ними по длине и ширине геосинклииальными и орогеническими поясами). Термин рифтовая система используется также для обозначения всех взаимосвязанных рифтовых поясов Земли, образующих в совокупности сложно извивающуюся и разветвляющуюся сеть на поверхности нашей планеты. В последнем случае мы говорим о мировой рифтой системе. Последняя, со своими главными ответвлениями, объединяет большинство рифтовых поясов (и систем) Земли. Основная ее часть пересекает океаны, а ее затухающие окончания и ответвления в нескольких районах Земли проникают в глубь континентов. Однако в пределах континентов (а возможно, и в океанах) имеются так же отдельные, изолированные рифтовые пояса и даже отдельные рифтовые зоны, не связанные с мировой рифтовой системой.

1) океанические, или внутриокеанические, в которых как осевая «рифтовая долина», так и ее обрамление обладают корой, близкой к океанической, которая подстилается выступом мантийного материала с аномально пониженными по сравнению с типичными для верхней части мантии скоростями прохождения сейсмических волн и плотностью;

2) межконтинентальные, в которых осевая часть рифта обладает корой, близкой к таковой внутриокеанических рифтовых зон, ее периферические части - несколько утонченной и переработанной континентальной корой, а «плечи»- типичной континентальной корой. Межконтинентальные рифтовые зоны, как и внутриконтинентальные, могут закладываться либо на платформах (рифты Аденский и Красноморский), либо в пределах молодой складчатой области (рифт Калифорнийского залива);

3) континентальные или внутриконтинентальные, в которых и рифт, и его «плечи» обладают корой континентального типа, но обычно несколько утоньшенной, в особенности под рифтом (от 20 до 30-35 км), раздробленной, аномально прогретой и подстилаемой линзой несколько разуплотненного мантийного материала.

Наблюдаемые в природе взаимопереходы и тесные структурные связи межконтинентальных рифтов как результат далеко зашедшего процесса развития внутриконтинентальных рифтов. По крайней мере некоторая часть ширины межконтинентальных рифтовых зон (порядка нескольких десятков километров), по-видимому, обусловлена раздвиговыми или раздвигово-сдвиговыми деформациями блоков континентальной коры и выдвижением между ними материала мантийного происхождения, тогда как во внутриконтинентальных рифтах мы в основном имеем дело с грабенообразным проседанием блоков материковой коры при амплитуде растяжения порядка нескольких километров и далеко не всегда - с заполнением приоткрывающихся трещин дайкообразными интрузиями. В свою очередь, межконтинентальные рифтовые зоны в структурном отношении тесно связаны с рифтовыми поясами Индийского и Тихого океанов, в которых процесс подъема глубинного материала и горизонтального расширения протекает еще более интенсивно. Однако было бы неосторожно полагать по аналогии, что все рифтовые зоны и пояса океанов представляют собой дальнейшую стадию развития межконтинентальных рифтов и, следовательно, возникли в результате еще большего разобщения блоков континентальной коры. Например, в отношении Восточно-Тихоокеанского рифтового пояса можно с достаточной уверенностью утверждать, что он моложе Тихого океана и возник на океанической коре. Тот факт, что продолжение этого рифтового пояса почти полностью переходит на Североамериканский континент и накладывается на Кордильерскую мезозойскую складчатую область, очевидно, говорит о том, что движущий механизм рифтогенеза связан с такими большими глубинами, на которых уже не сказываются различия между океанами и континентами, но конкретные проявления этого процесса на поверхности Земли существенно отличаются в зависимости от того, воздействует ли он на земную кору океанов, молодых складчатых областей, платформ и т. п.

Рифтовые зоны и пояса, принадлежащие к трем выделенным категориям, существенно различаются по своим размерам, морфологии структурных форм, масштабу вулканизма (наибольшему в рифтовых зонах океанов), химизму его продуктов (толеитовые базальты в рифтовых зонах, весьма разнообразные по кислотности и щелочности породы в рифтовых зонах континентов), величине теплового потока (наивысшей в океанических рифтовых зонах), структуре магнитного поля, плану напряжений в очагах землетрясений (в континентальных рифтовых зонах вектор сжимающих напряжений ориентирован субвертикально, а в океанических - обычно субгоризонтально и субпараллельно простиранию рифтовой зоны) и т. д. Для континентальных рифтовых поясов характерны такие пространственные сочетания смежных рифтовых зон, как их четковидное, кулисное расположение, коленчатое сочленение, веерообразное расщепление, стык трех зон, сходящихся под различными углами, взаимный параллелизм, огибание двумя соседними зонами разделяющего их относительно «жесткого» блока, играющего в структуре рифтового пояса роль своеобразного срединного массива. Напротив, для рифтовых поясов океанов характерно их пересечение многочисленными поперечными или диагональными так называемыми трансформирующими разломами, разделяющими эти пояса на отдельные поперечные отрезки (рифтовые зоны), оси которых кажутся смещенными друг относительно друга.

Типы рифтовых зон континентов. При выделении типов среди современных континентальных рифтовых зон следует учитывать следующие основные критерии: а) особенности тектонического положения, структуры основания и предшествующей геологической истории области, ставшей ареной рифтогенеза, б) характер тектонических структур, созданных в процессе рифтогенеза, и закономерности их формирования, в) роль, масштаб и особенности магматических процессов, сопутствующих рифтообразованию, а иногда и предваряющих его.

Исходя из первого критерия, рифтовые зоны и пояса континентов можно разделить на две главные группы: 1) рифтовые пояса и зоны платформ (эпиплатформенные рифтовые пояса и зоны), в которых риф-тообразование началось после весьма длительного (200-500 млн. лет к более) этапа платформенного или близкого к нему развития; 2) рифтовые пояса и зоны молодых складчатых сооружений (эпиорогенные рифтовые пояса и зоны), где аналогичный процесс непосредственно следовал за завершением их геосинклинального развития, т. е. за орогенным этапом, или даже сочетался с явлениями, свойственными эпигеосииклинальному орогенезу. Для эпиплатформенных рифтовых поясов характерны рифтовые зоны с крупными единичными осевыми грабенами и субщелочной или щелочной характер продуктов сопутствующего вулканизма, нередко с участием карбонатитов. Напротив, для эпиорогенных рифтовых поясов и зон типичны сочетания из многих узких грабенов, горстов и односторонних блоков, а вулканические образования л них принадлежат к известково-щелочному ряду.

Большинство современных континентальных эпиплатформенных рифтовых зон приурочено главным образом к выступам складчатого основания платформ, т. е. к районам, испытывавшим длительное устойчивое поднятие, и значительно реже - к участкам развития платформенного чехла (Левантинская, Североморская, частично Эфиопская рифтовые зоны). В большинстве случаев рифтовые зоны накладываются на области позднепротерозойской (гренвильской, байкальской) складчатости или тектоно-магматической регенерации, «избегая» областей более.древней - архейской или раннепротерозойской консолидации, которые служат внешней «рамой» этих рифтовых поясов или образуют внутри них своеобразные «жесткие» срединные массивы (массив Виктория в южной части Африкано-Аравийского пояса). Значительно реже рифтовые зоны возникают на эпипалеозойском платформенном основании (Рейнско-Ронский участок Рейнско-Ливийского рифтового пояса). В большинстве случаев молодые рифтогенные структуры наследуют простирания древних складчатых и разрывных структур фундамента или «приспосабливаются» к ним, образуя коленчатые, зигзаговидные, кулисные сочетания. Таким образом, в процессе рифтогенеза древний анизотропный фундамент раскалывается по наиболее ослабленным направлениям, подобно тому, как полено дров расщепляется согласно волокнистой текстуре древесины. Ослабленные зоны фундамента, использованные кайнозойскими рифтогенными структурами, в течение длительного платформенного развития временами (в палеозое или мезозое) активизировались и служили либо зонами повышенной проницаемости для магматических расплавов и внедрения интрузий, в частности щелочных массивов кольцевого типа, либо зонами разломов и грабенов.

Среди эпиплатформенных рифтовых зон четко выделяются два типа, существенно различающихся по характеру структур, относительной роли вулканизма и истории формирования. Автор назвал их щелевым и сводово-вулканическим (Милановский, 1970):

а) рифтовые зоны сводово-вулканического типа (Эфиопская и Кенийская зоны Восточной Африки) характеризуются исключительно мощной и Длительной наземной вулканической деятельностью. Она начинается на широкой площади еще до заложения рифта, а впоследствии продолжается в пределах осевого грабена и связанных с ним второстепенных грабенов и зон разломов. Главную роль играют извержения основных и средних лав и пирокластолитов сильно щелочного и слабо щелочного ряда. В Эфиопской рифтовой зоне существенную роль играют также кислые (с повышенной щелочностью) вулканиты. Возникновению рифта предшествует длительный рост обширного пологого овального сводового поднятия, сопровождаемый мощными извержениями, затем в его осевой ослабленной зоне закладывается сравнительно неглубокий грабен, а также связанные с ним дополнительные грабены и сбросы - поперечные и диагональные на крыльях свода и веерообразно расходящиеся на его периклиналях. Амплитуда горизонтального растяжения в сводово-вулканических рифтовых зонах минимальна. Они отличаются умеренной сейсмичностью. Формирование свода, характеризуемого крупным гравитационным минимумом, по-видимому, связано с возникновением линзы разуплотненного, аномально разогретого материала и с отдельными магматическими очагами в верхах мантии, а образование грабенов частично обусловлено проседанием блоков коры при разгрузке этих очагов в процессе извержений;

б) рифтовые зоны щелевого типа отличаются большей глубиной грабенов, которая может достигать 3-4 (Верхнерейнский грабен) и даже 5-7 км (Южно-Байкальский грабен). С большой мощностью рыхлых осадков в грабенах связаны крупные гравитационные минимумы. Нередко грабены кулисно подставляют друг друга. Краевые поднятия значительно уже, чем в сводово-вулканических рифтах, прослеживаются не повсеместно, нередко лишь с одной стороны грабена, и иногда вовсе отсутствуют, а в некоторых случаях (рифтовая зона Северного моря) развитие рифтов происходит на фоне общего опускания. Местами внутри рифтовой зоны возникают сводо- и горстообразные поднятия, достигающие в отдельных случаях огромной высоты (до 4- 5 км в блоке Рувензори в Танганьикской зоне). С внутренними поднятиями связаны гравитационные максимумы, и их выдвигание носит антиизостатический характер. Щелевые рифтовые зоны характеризуются относительно слабыми, локальными и эпизодическими проявлениями вулканизма или полным их отсутствием. По этому признаку среди них можно выделить слабовулканические (Танганьикская, Верхнерейнская) и невулкаиические зоны (средний сегмент Байкальского рифтового пояса). Центры извержений приурочиваются к седловинам между четковидно расположенными грабенами, их прибортовым ступеням, краевым поднятиям и другим приподнятым участкам. Петрохимически вулканизм близок к сводово-вулканическим зонам, но здесь чаще присутствуют крайне щелочные серии (натриевые или калиевые) и карбонатиты. Вулканическая активность может проявляться на разных стадиях рифтогенеза.

Процесс формирования щелевых зон начинается с заложения узких линейно вытянутых грабенов (обычно приуроченных к древним ослабленным зонам), заполняемых первоначально тонкообломочными («молассоидными»), а также карбонатными и хемогенными осадками, которые впоследствии сменяются более грубообломочными континентальными молассами. Этот формационный ряд, а также геоморфологические данные показывают, что интенсивный рост краевых и внутренних поднятий начался позднее заложения грабенов, а местами еще не проявился. Концепция возникновения рифта в результате обрушения свода к щелевым рифтовым зонам неприменима. Эти зоны более сейсмичны, чем сводово-вулканические. Амплитуда горизонтального растяжения в них может быть большей, чем в последних, но, по-видимому, обычно не превышает 5-10 км. В грабенах щелевых рифтовых зон, очевидно, происходит значительная «утечка» тепловой энергии. В некоторых щелевых зонах, помимо раздвиговой, имеется сдвиговая компонента. В Левантинской зоне последняя, по-видимому, значительно превосходит поперечное растяжение, а на отдельных ее участках горизонтальная деформация приближается к чистому сдвигу.

В рифтовых поясах и зонах молодых складчатых сооруженийрифтообразование следует за геосинклинальным циклом развития, являясь непосредственным продолжением его заключительного, орогенного этапа. В процессе рифтогенеза в этих зонах нередко возникает система из узких, но весьма протяженных (до многих сотен километров) взаимопараллельных грабенов, разделенных соизмеримыми с ними узкими горстами или односторонними горстами (рифтовая система Кордильер). Амплитуды относительного перемещения блоков по разделяющим их нормальным наклонным сбросам достигают 2-5 км. Наряду с общим значительным горизонтальным растяжением могут иметь место значительные сдвиговые деформации (например сдвиг Сан-Андреас в Калифорнии). Формирование рифтогенных структур предваряется и сопровождается исключительно мощными извержениями магмы известково-щелочного ряда, как кислой, так и основной. Питание вулканов происходило из очагов разной глубинности, располагавшихся как в верхней мантии (очаги базальтового вулканизма), так и в коре (очаги липарито-дацитового вулканизма). Рассредоточенность растяжения и сопутствующего вулканизма в пределах очень широкой полосы с многочисленными грабенами в некоторых эпиорогенных рифтовых зонах, очевидно, связана с тем, что рифтогенез развивается в условиях более «прогретой» и «пластичной», а в верхней части - раздробленной литосферы по сравнению с относительно «жесткой» и «холодной» литосферой эпиплатформенных рифтовых зон.

Рифты (Байкальский рифт)

Рифты как глобальные геотектонические элементы - это характерная структура растяжения земной коры (по Артемьеву, Артюшкову, 1968; Ушакову и др., 1972). Под понятие рифтов подходят также узкие формы рельефа- борозды (“грабены”), еще не скомпенсированные осадками и отложениями; крупные и широкие впадины с достаточно взаимоудаленными бортами; куполовидные, или протянувшиеся в виде хребтов, системы поднятий, осложненные осевым грабеном (например, рифты в центральных частях океанов и в Восточной Африке). Считается, что все это есть лишь различные временные стадии формирования рифтовых структур, которые обнаружены в настоящее время в океанах и на континентах. Возраст определяется по отложениям и осадкам.

Первое место среди планетарных рифтовых систем занимает образовавшаяся в течение кайнозоя и развивающаяся по настоящее время Мировая система рифтов (МСР), обнаруженная в 1957 году, которая протягивается на длину свыше 60 тыс. км под водами Мирового океана, и заходящая рядом своих ответвлений также на континент. МСР представляют собой широкие (до тысячи километров и более) поднятия, возвышающиеся над дном на 3,5 - 4 километра и протягивающиеся на тысячи километров. К осевым частям хребтов приурочены активные рифтовые зоны, состоящие из системы узких грабенов (рифтовых ущелий типа Байкала), обрамленных рифтовыми горными грядами типа Байкальского, Баргузинского и других хребтов, окружающих Байкал.

К другим рифтовым (планетарного масштаба) относятся рифты, приуроченные к континентам (кроме оговоренных выше) - например, Рейнский грабен (длина около 600 км) или рассматриваемый в работе регион - Байкальская рифтовая зона (длина более 2,5 тыс км). Современные рифтовые зоны континентов имеют много общего с рифтами срединноокеанических хребтов, принадлежащих МСР. Их возникновение также связано с процессами подъема глубинного вещества, сводового поднятия, горизонтального растяжения земной коры под его напором, утонением коры и подъемом поверхности Мохоровича. Континентальные рифтовые системы (КСР) также образуют ветвящиеся в плане протяженные системы (подобно МСР), но гораздо менее выраженные в рельефе, поэтому некоторые их звенья кажутся изолированными.

На первый взгляд трудно назвать аналогом Байкала рифтовое ущелье, погребенное под толщей воды в 3 - 3,5 километра. Но происхождение Байкальской и океанических рифтовых зон одинаково по своей сути.

Родным "братом" Байкала называют расположенное в Монголии озеро Хубсугул, вытянутое в виде серпа на 130 километров. Максимальная его глубина достигает 238 метров. Хубсугульская и Байкальская впадины входят в Байкальскую рифтовую зону. В Хубсугул, как и в Байкал, впадает много (около 70) рек, а вытекает тоже единственная - Эгингол.

Кстати, Хубсугул через реки Эгингол и Селенгу связан с Байкалом. Хубсугул в 12 раз по площади, почти в 5 раз по длине и в 7 раз по глубине меньше Байкала.

Еще один явный аналог находится в Восточной Африке, а точнее в Восточно-Африканской рифтовой зоне, в пределах которой расположены озера Ньяса, Танганьика, Киву, Мобуту-Сесе-Секо (бывшее озеро Альберт), Иди-Амин-Дада (бывшее озеро Эдуард) и другие, более мелкие.

Первые два озера справедливо называют "сестрами" Байкала. Параметры их удивительно схожи. Лишь несколько более теплый климат и тропическая флора отличают их от Байкала.

Озеро Танганьика расположено в Заире, Танзании, Замбии и Бурунди на высоте 773 метра (почти на 320 метров выше Байкала). Длина его 650 километров. Площадь почти 34 тысячи квадратных километра, против 31,5 тысячи км у Байкала. Лишь по глубине Байкал на 150 метров превосходит озеро Танганьика (1620 и 1470 м).

Мало чем уступает Байкалу озеро Ньяса, расположенное в Малави, Мозамбике и Танзании. Площадь его 30,8 тысячи квадратных километра, а глубина - до 706 метров.

Благодаря тому, что эти озера находятся в тропиках, температура воды не опускается ниже 20-22 градусов. Фауна озер Танганьика и Ньяса почти на 70 процентов эндемична. Причем, как и в Байкале, многие виды похожи на обитателей морских глубин.

Обычно ширина континентальных рифтов составляет около 45-50 км, при вертикальной амплитуде погружения фундамента рифта (грабена) от 1 до 7 км. Обычно опускание дна рифтовых прогибов в значительной степени компенсировано процессами осадконакопления, однако значительная их часть представлена депрессиями, занятыми водами морей, озер и долинами рек.

Большинство КСР имеют кайнозойский возраст образования. Байкальский рифт образовался в конце палеогена.

В поперечном сечении рифтовая зона представляет собой систему ступенчато погружающихся к осевой части скошенных под различными углами блоков (см. рис). Поверхности раздела обычно являются крутопадающими сбросами.

Земная кора континентальных рифтов характеризуется заметным утонением до 20-30км, подъемом поверхности Мохоровича и увеличением мощности осадочного слоя, поэтому в разрезе земная кора имеет форму двояковыгнутой линзы.

Методами глубинного сейсмического зондирования было установлено наличие под Рейнским, Байкальским и Кенийским рифтами разуплотненных пород мантии.

Континентальные рифты также выделяет наличие повышенного теплового потока и отрицательных аномалий магнитного поля.

Характер смещений в очагах землетрясений свидетельствует о горизонтальном растяжении земной коры. Для Рейнского грабена это составляет около 5 км, для Байкальского же - на порядок выше.

Наиболее существенным различием между современными океанскими зонами рифтов (ОЗР) и континентальными зонами рифтов (КЗР) при наличии многих черт сходства между ними является то, что относительно более толстая и прочная континентальная кора, хотя и утоняется при растяжке (и кое-где разрывается), давая выход базальтовому вулканизму, все же сохраняет свою целостность. В отличие от разверзающихся недр ОСР, из которых на поверхность твердой коры поступают породы верхних слоев мантии, или, по крайней мере, расплавленная смесь этих пород с породами разрушений и ассимилирований старой коры, в КЗР не происходит новообразований земной коры. Быть может, это означает, что современные КЗР есть лишь первая стадия образования МСР и что в эпоху рождения, например, Атлантического океана дело также начиналось с образования в теле Лавразии звеньев КЗР, подобных на более ранней стадии Байкальской зоне, а затем (на последующей временной стадии) Восточно-Африканскому рифту. Таким образом, с некоторой оговоркой Байкал можно называть зародышем будущего океана. По теории рифта на земном шаре существовали и более молодые аналоги Байкала. Считается, что один из них расположен на месте нынешнего Красного моря, вдоль которого проходит Красноморская рифтовая зона. В геологическом масштабе времени относительно недавно на месте Красного моря существовал обширный пресноводный глубоководный бассейн, сопоставимый по площади, а то и в несколько раз превосходящий Байкал. В этом случае сработал как бы противоположный вариант.

Две соседние литосферные плиты Африканская и Индийская, сопряженные по зоне Красноморского рифта, начали медленно, со скоростью один-два сантиметра в год, удаляться друг от друга. Из-за этого расширения и площадь озерного бассейна увеличивалась, так как все новые участки суши уходили под воду. И вот однажды на месте нынешнего Баб-эль-Мандебского пролива последний участок суши, отделяющий палеоозеро от Индийского океана, ушел под воду. Океан через Аденский залив хлынул в палеоозеро.

Было это около девяти миллионов лет назад. Произошло смешение океанических и озерных вод и довольно быстрое осолонение последних. Это вызвало массовую гибель пресноводной озерной фауны и замену ее морской. Ныне Красное море имеет площадь 450 тысяч квадратных километров, а глубина его немногим превышает три километра. На земном шаре это одно из самых соленых морей (20-40 процентов). В пределах Байкальской рифтовой зоны, кроме самого Байкала, существует ряд крупных сухопутных впадин, выполненных четвертичными озерно-речными отложениями. В их числе Тункинская, Баргузинская, Нижнеи Верхне-Ангарские, Муйская, Чарская...

Одна из этих впадин - Муйская, или Муйско-Куандинская, - расположена на территории Бурятии и Читинской области. Вдоль ее бортов на высоте 850-860 метров над уровнем моря (на 300-350 метров выше поймы рек Муя и Витим), участками прослеживается четкая линия. На этой высоте к склонам гор иногда прислонены террасовидные уступы, сложенные хорошо окатанными озерными гравийно-галечными и песчаными отложениями. Уровень озера испытывал периодические колебания. Иногда вода поднималась до высоты 1000-1100 метров над уровнем моря и, возможно, еще выше. В этом случае озеро вытягивалось на 260-265 километров при ширине до 50-55 километров. Глубина озера достигала, а, возможно, и превышала 500-1000 метров.

Сегодня Муйская впадина отделена невысокими перемычками от Чарской и Верхне-Токкской впадин. Временами вода, по-видимому, покрывала эти перемычки, и тогда возникал обширный водный бассейн, вытянутый в длину более чем на 500 километров. Со временем река Витим проложила себе новое русло через Южно - и Северо-Муйский хребты и палеоозеро было осушено. На его месте остались песчаные, а близ склонов гор - гравийно-галечные и валунно-галечные отложения, ныне перемываемые водами рек Муя, Витим и их притоками.

Таким образом, значительный отрезок Байкало-Амурской магистрали проложен по дну бывших крупных озер - древних аналогов Байкала. А существовали эти озера относительно недавно - несколько десятков тысяч лет назад.

В изучении рифтовых структур многое еще не выяснено и не изучено. Является ли рифтообразование процессом, присущим только мезокайнозойским эрам? Возник ли этот процесс лишь в последующие 100-150 млн. лет жизни Земли, или на его долю следует отнести преобразование ее лика и в более ранние эпохи? На эти вопросы еще не даны ясные ответы.

Вообще, даже такие геообъекты, как Днепровско-Донецкая впадина, центральная часть Московской синеклизы считаются древними рифтовыми зонами (Гордасников, Троцкий, 1966) etc.

Процессы рифтообразования следует рассматривать как одну из характерных черт развития земной коры, имевшей место в течение всей истории ее жизни. Они обусловлены горизонтальным растяжением земной коры, приводящей к вертикальному опусканию. Блоков земной коры и поднятию на дневную поверхность вещества мантии.

В развитии рифтовых зон имеет место определенная стадийность. На первой стадии вследствие подтекания разуплотенного вещества мантии в земной коре образуется куполообразное или линейно-протяженное поднятие, затем за счет растяжения идет формирование грабеновых прогибов в наиболее приподнятых их частях. На последующих стадиях рифтовые зоны могут служить осевыми частями более крупных опусканий, или, в случае смены растяжения сжатием, перерождаются в складчатые приподнятые сооружения геосинклинального типа.

Распространение рифтовых зон не имеет строго линейного характера. Отдельные их части (элементы) взаимно смещаются в поперечном направлении по трансформным разломам.

Изучение современных и древних рифтовых зон в океане и на континентах позволит получить ясное представление о строении и геологической истории этих крупных геологических планетарных структур, а также о нефтегазоносности многокилометровых осадочных пород, заполняющих многие рифтовые впадины. Озеро Байкал как относительно молодая рифтовая зона при ее дальнейшем изучении способна предоставить еще более обширный материал для более глубокого понимания сущности геологических, магматических процессов в области рифтовых зон.