Про психологию. Учения и методики

Внутри ядра - вселенная в электроне. Притяжение внутри ядра Внутренняя часть ядра

Притяжение внутри ядра

Если при рассмотрении атомных ядер пренебречь гравитационными взаимодействиями и учитывать только электромагнитные, трудно объяснить существование ядра. Частицы, из которых оно состоит, не могли бы соединиться из-за колоссальных сил отталкивания между протонами; но даже если бы они каким-то образом все же соединились, они немедленно разлетелись бы, как при взрыве огромной силы. При этих условиях существовали бы только ядра водорода, состоящие из одного протона (или в некоторых случаях из протона и нейтрона).

И все же образовались, существуют и остаются стабильными все типы сложных ядер. Ядро урана-238 содержит 92 протона, находящихся в чрезвычайно тесном контакте друг с другом, тем не менее распадается оно чрезвычайно медленно, а ядро свинца с 82 протонами, так сказать, устойчиво, вечно.

Если факты противоречат теории, ее следует изменить. Если протоны связаны внутри ядра, должно быть притяжение, которое удерживает их вместе; притяжение, которое сильнее электромагнитного отталкивания. Следовательно, существуют ядерные взаимодействия, которые создают необходимое притяжение. Можно даже предсказать некоторые свойства ядерного взаимодействия. Во-первых, как отмечалось, оно должно быть сильнее электромагнитного и должно создавать притяжение между двумя протонами (а также между протоном и нейтроном и между двумя нейтронами). Во-вторых, ядерное взаимодействие должно действовать только на очень коротких расстояниях.

Электромагнитное и гравитационное взаимодействие обнаруживаются на значительном расстоянии. Каждая единица электрического заряда является как бы центров электромагнитного поля, которое простирается во всем направлениях и постепенно уменьшается с расстоянием. Аналогично каждая единица массы является центром гравитационного поля.

Напряженность каждого из этих полей обратно пропорциональна квадрату расстояния между взаимодействующими телами. Если, например, расстояние между протонами увеличится в два раза, гравитационное притяжение и электромагнитное отталкивание уменьшатся в четыре раза. Несмотря на такое ослабление, оба поля действуют на больших расстояниях. Например, Земля находится под действием гравитации Солнца, несмотря на то что их разделяет расстояние в 150 000 000 км. Значительно более удаленная планета Плутон также удерживается Солнцем, а Солнце, в свою очередь, удерживается на огромной орбите вокруг центра Галактики. Следовательно, электромагнитное и гравитационное поля вполне можно назвать «дальнодействующими».

Ядерные взаимодействия, рождающиеся в ядерном поле, изменяются однако не обратно пропорционально квадрату расстояния. Под действием ядерного поля два протона притягиваются друг к другу с большой силой, пока фактически не соприкоснутся. Но на расстояниях, превышающих размеры атомного ядра, притяжение, вызванное ядерным полем, слабее отталкивания за счет электромагнитного поля; поэтому везде, за исключением внутренних областей ядра, два протона отталкиваются.

Действительно, если атомное ядро имеет необыкновенно большие размеры, ядерное притяжение не в состоянии скомпенсировать электромагнитное отталкивание между протонами по всему объему ядра, и оно стремится развалиться. Именно такие ядра со сложной структурой испытывают?-распад, а иногда подвергаются даже более радикальному распаду, который мы называем «делением». Ядерное поле убывает обратно пропорционально не квадрату, а приблизительно седьмой степени расстояния. Если расстояние между двумя протонами увеличивается вдвое, притяжение между ними уменьшается не в 4 раза, а в 128 раз. Это означает, что поле внутри ядра в сотни раз сильнее электромагнитного, а вне ядра им можно пренебречь.

В 1932 году Гейзенберг (впервые предложивший протон-нейтронную модель ядра) разработал теорию, согласно которой взаимодействия полей осуществляются посредством обмена частицами. Например, притяжение и отталкивание в электромагнитном поле происходят в результате обмена фотонами между телами, испытывающими притяжение или отталкивание, иначе говоря, с помощью так называемых обменных сил. Если соображения Гейзенберга применимы и к ядерному полю, протоны и нейтроны ядра должны обмениваться некоторой частицей, чтобы между ними возникло необходимое притяжение, удерживающее их вместе.

Что это за частица? Почему она создает короткодействующую силу? И снова ответ (как и многие другие ответы в ядерной физике) возник при рассмотрении законов сохранения, но с совершенно новой точки зрения.

Из книги Приключения Мистера Томпкинса автора Гамов Георгий

Глава 12 Внутри ядра Следующая лекция, которую посетил мистер Томпкинс, была посвящена внутреннему строению ядра как центра, вокруг которого вращаются атомные электроны.- Леди и джентльмены, - начал профессор. - Все более углубляясь в строение материи, мы попытаемся

Из книги [лекция для школьников] автора Иванов Игорь Пьерович

Удивительный мир внутри атомного ядра

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Удивительный мир внутри атомного ядра

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Отталкивание внутри ядра К 1932 году стало ясно, что ядра состоят исключительно из протонов и нейтронов. От более ранних теорий, которые утверждали, что в ядре находятся электроны, отказались. Хотя это решило сразу много проблем, возник вопрос, которого не было раньше.До сих

Из книги E=mc2 [Биография самого знаменитого уравнения мира] автора Боданис Дэвид

Притяжение двоих людей Как же велика эта сила взаимного притяжения тел? Она может быть и невообразимо ничтожна и чудовищно могущественна, - в зависимости от размеров притягивающихся масс и от их взаимного расстояния. Два взрослых человека, отстоящие на сажень один от

Из книги Эволюция физики автора Эйнштейн Альберт

Притяжение двух кораблей Всемирное притяжение Закон масс - притяжение пропорционально произведению притягивающихся масс. 1 единица массы притягивает 1 единицу с силою 1 ед. 2 единицы массы притягивают 1 единицу с силою 2 ед. 3 единицы массы притягивают 2 единицы с силою 6

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Притяжение двух миров Зато для таких огромных масс, как целые солнца и планеты, взаимное притяжение даже на гигантских расстояниях достигает степеней, превосходящих человеческое воображение. Всемирное притяжение Закон расстояний - притяжение убывает пропорционально

Из книги Твиты о вселенной автора Чаун Маркус

Внутри ядра Это небывалое путешествие пройдет для пассажиров Жюль-Вернова ядра далеко не так мирно и благополучно, как описано в романе. Не думайте, однако, что опасность грозит им во время путешествия от Земли до Луны. Ничуть! Если бы им удалось остаться живыми к моменту,

Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

К главе VIII 6. Давление внутри пушечного ядра Для читателей, которые пожелали бы проверить расчеты, упомянутые на стр. 65-й, приводим здесь эти несложные вычисления.Для расчетов нам придется пользоваться лишь двумя формулами ускоренного движения, именно:1) Скорость v в конце

Из книги Черные дыры и складки времени [Дерзкое наследие Эйнштейна] автора Торн Кип Стивен

Глава 8. Внутри атома Университетских студентов 1900 года учили тому, что обычное вещество - то, из которого состоят кирпичи, сталь, уран и все прочее, - и само состоит из мельчайших частиц, именуемых атомами. Однако, из чего состоят атомы, этого не знал никто. Общее мнение

Из книги автора

Вне и внутри лифта Закон инерции является первым большим успехом в физике, фактически ее действительным началом. Он был обнаружен при размышлении над идеализированным экспериментом, над телом, постоянно движущимся без трения и без воздействия каких-либо других внешних

Из книги автора

33. Притяжение жидкостей Притягиваются к наэлектризованным вещам не только твердые предметы, но и жидкости. Нет ничего легче, как обнаружить электрическое притяжение, например, водяной струи: гребень, проведенный по волосам, приблизьте к тонкой струе воды, вытекающей из

Из книги автора

17. Почему Земля внутри расплавлена? Это не так. По крайней мере, не в самом центре планеты. Земля имеет твердое внутреннее ядро и жидкое внешнее ядро. Оба состоят из железа и никеля.В обычных условиях железо плавится при 1536 °C. Но температура плавления материала растет с

Из книги автора

37. Что там, внутри Солнца? Солнце - огромный шар из газа, имеющий 1,4 млн км в поперечнике. В основном оно состоит из водорода (75 %) и гелия (24 %).К центру плотность и температура значительно увеличиваются.Солнце не имеет нейтральных атомов. Атомные ядра (положительный заряд)

Из книги автора

Из книги автора

13 ВНУТРИ ЧЕРНЫХ ДЫР глава, в которой физики борются с уравнением Эйнштейна и пытаются понять, что скрыто внутри черных дыр: путь в другую Вселенную? Сингулярность с бесконечными приливными гравитационными силами? Конец пространства и времени и рождение квантовой

Мощностью около 2200 км, между которыми иногда выделяется переходная зона. Масса ядра - 1,932 10 24 кг.

Известно о ядре очень мало - вся информация получена косвенными геофизическими или геохимическими методами, и образы вещества ядра не доступны, и вряд ли будут получены в обозримом будущем. Однако фантасты уже несколько раз в подробностях описали путешествия к ядру Земли и несметные богатства там таящиеся. Надежда на сокровища ядра имеет под собой некоторые основания, так как согласно современным геохимическим моделям в ядре относительно велико содержание благородных металлов и других ценных элементов.

История изучения

Вероятно одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность характерная для пород выходящих на земную поверхность.

Существование было доказано в 1897 немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 американским геофизиком Б. Гутенбергом.

Аналогичные расчеты можно сделать для металлических метеоритов, которые являются фрагментами ядер мелких планетарных тел. Оказалось, что в них формирования ядра происходило значительно быстрее, за время порядка нескольких миллионов лет.

Теория Сорохтина и Ушакова

Описанная модель не является единственной. Так по модели Сорохтина и Ушакова, изложенной в книге "Развитие Земли" процесс формирования земного ядра растянулся приблизительно на 1,6 млрд лет (от 4 до 2,6 млрд лет назад). По мнению авторов образование ядра происходило в два этапа. Сначала планеты была холодной, и в её глубинах не происходило никаких движений. Затем она прогрелось радиоактивным распадом достаточно для того, чтобы начало плавиться металлическое железо. Оно стало стекаться к центру земли, при этом за счет гравитационной дифференциации выделялось большое количество тепла, и процесс отделения ядра только ускорялся. Этот процесс шел только до некоторой глубины, ниже которой вещество было такое вязкое, что железо погружаться уже не могло. В результате образовался плотный (тяжелый) кольцевой слой расплавленного железа и его окиси. Он располагался над более легким веществом первозданной “сердцевины” Земли.

Ядро клетки - центральный органоид, один из самых важных. Наличие его в клетке является признаком высокой организации организма. Клетка, имеющая оформленное ядро, называется эукариотической. Прокариоты - это организмы, состоящие из клетки, не имеющей оформленного ядра. Если подробно рассмотреть все его составляющие, то можно понять, какую функцию выполняет ядро клетки.

Структура ядра

  1. Ядерная оболочка.
  2. Хроматин.
  3. Ядрышки.
  4. Ядерный матрикс и ядерный сок.

Структура и функции ядра клетки зависят от типа клеток и их предназначения.

Ядерная оболочка

Ядерная оболочка имеет две мембраны - внешнюю и внутреннюю. Они разделены между собой перинуклеарным пространством. Оболочка имеет поры. Ядерные поры необходимы для того, чтобы различные крупные частицы и молекулы могли перемещаться из цитоплазмы в ядро и обратно.

Ядерные поры образуются в результате слияния внутренней и наружной мембраны. Поры представляют собой округлые отверстия, имеющие комплексы, в которые входят:

  1. Тонкая диафрагма, закрывающая отверстие. Она пронизана цилиндрическими каналами.
  2. Белковые гранулы. Они находятся с двух сторон от диафрагмы.
  3. Центральная белковая гранула. Она связана с периферическими гранулами фибриллами.

Количество пор в ядерной оболочке зависит от того, насколько интенсивно в клетке проходят синтетические процессы.

Ядерная оболочка состоит из внешней и внутренней мембран. Внешняя переходит в шероховатый ЭПР (эндоплазматический ретикулум).

Хроматин

Хроматин - важнейшее вещество, входящее в ядро клетки. Функции его - это хранение генетической информации. Он представлен эухроматином и гетерохроматином. Весь хроматин - это совокупность хромосом.

Эухроматин - это части хромосом, которые активно принимают участие в транскрипции. Такие хромосомы находятся в диффузном состоянии.

Неактивные отделы и целые хромосомы представляют собой конденсированные глыбки. Это и есть гетерохроматин. При изменении состояния клетки гетерохроматин может переходить в эухроматин, и наоборот. Чем больше в ядре гетерохроматина, тем ниже скорость синтеза рибонуклеиновой кислоты (РНК) и тем меньше функциональная активность ядра.

Хромосомы

Хромосомы - это особые образования, которые возникают в ядре только во время деления. Хромосома состоит из двух плеч и центромеры. По форме их делят на:

  • Палочкообразные. Такие хромосомы имеют одно большое плечо, а другое маленькое.
  • Равноплечные. Имеют относительно одинаковые плечи.
  • Разноплечные. Плечи хромосомы зрительно отличаются между собой.
  • С вторичными перетяжками. У такой хромосомы имеется нецентромерная перетяжка, которая отделяет спутничный элемент от основной части.

У каждого вида количество хромосом всегда одинаково, но стоит отметить, что от их количества не зависит уровень организации организма. Так, у человека имеется 46 хромосом, у курицы - 78, у ежа - 96, а у березы - 84. Наибольшее число хромосом имеет папоротник Ophioglossum reticulatum. У него 1260 хромосом на каждую клетку. Наименьшее число хромосом имеет самец-муравей вида Myrmecia pilosula. У него только 1 хромосома.

Именно изучив хромосомы, ученые поняли, каковы функции ядра клетки.

В состав хромосом входят гены.

Ген

Гены - это участки молекул дезоксирибонуклеиновой кислоты (ДНК), в которых закодированы определенные составы молекул белка. В результате этого у организма проявляется тот или иной признак. Ген передается по наследству. Так, ядро в клетке выполняет функцию передачи генетического материала следующим поколениям клеток.

Ядрышки

Нуклеола - это самая плотная часть, которая входит в ядро клетки. Функции, которые она выполняет, очень важны для всей клетки. Обычно имеет округлую форму. Количество ядрышек варьируется в разных клетках - их может быть два, три либо вооще не быть. Так, в клетках дробящихся яиц нуклеолы нет.

Структура ядрышка:

  1. Гранулярный компонент. Это гранулы, которые находятся на периферии ядрышка. Их размер варьируется от 15 нм до 20 нм. В некоторых клетках ГК может быть равномерно распределен по всему ядрышку.
  2. Фибриллярный компонент (ФК). Это тонкие фибриллы, размером от 3 нм до 5 нм. Фк представляет собой диффузную часть ядрышка.

Фибриллярные центры (ФЦ) - это участки фибрилл, имеющие низкую плотность, которые, в свою очередь, окружены фибриллами с высокой плотностью. Химический состав и строение ФЦ почти такие же, как и у ядрышковых организаторов митотических хромосом. В их состав входят фибриллы толщиной до 10 нм, в которых есть РНК-полимераза I. Это подтверждается тем, что фибриллы окрашиваются солями серебра.

Структурные типы ядрышек

  1. Нуклеолонемный или ретикулярный тип. Характеризуется большим количеством гранул и плотного фибриллярного материала. Данный тип структуры ядрышка характерен для большинства клеток. Его можно наблюдать как в животных клетках, так в растительных.
  2. Компактный тип. Характеризуется небольшой выраженностью нуклеономы, большим количеством фибриллярных центров. Встречается в растительных и животных клетках, в которых активно происходит процесс синтеза белка и РНК. Этот тип ядрышек характерен для клеток, активно размножающихся (клетки культуры ткани, клетки растительных меристем и др.).
  3. Кольцевидный тип. В световой микроскоп данный тип виден как кольцо со светлым центром - фибриллярный центр. Размер таких ядрышек в среднем 1 мкм. Данный тип характерен только для животных клеток (эндотелиоциты, лимфоциты и др.). В клетках с таким типом ядрышек довольно низкий уровень транскрипции.
  4. Остаточный тип. В клетках этого типа ядрышек не происходит синтез РНК. При определенных условиях данный тип может переходить в ретикулярный или компактный, т. е. активироваться. Такие ядрышки характерны для клеток шиповатого слоя кожного эпителия, нормобласта и др.
  5. Сегрегированный тип. В клетках с этим типом ядрышек не происходит синтез рРНК (рибосомной рибонуклеиновой кислоты). Это происходит, если клетка обработана каким-либо антибиотиком или химическим веществом. Слово «сегрегация» в данном случае обозначает «разделение» или «обособление», так как все компоненты ядрышек разделяются, что приводит к его уменьшению.

Почти 60% сухого веса ядрышек приходится на белки. Их количество очень велико и может достигать нескольких сотен.

Главная функция ядрышек - это синтез рРНК. Зародыши рибосом попадают в кариоплазму, затем через поры ядра просачиваются в цитоплазму и на ЭПС.

Ядерный матрикс и ядерный сок

Ядерный матрикс занимает почти все ядро клетки. Функции его специфичны. Он растворяет и равномерно распределяет все нуклеиновые кислоты в состоянии интерфазы.

Ядерный матрикс, или кариоплазма, - это раствор, в состав которого входят углеводы, соли, белки и другие неорганические и органические вещества. В нем содержатся нуклеиновые кислоты: ДНК, тРНК, рРНК, иРНК.

В состоянии деления клетки ядерная оболочка растворяется, образуются хромосомы, а кариоплазма смешивается с цитоплазмой.

Основные функции ядра в клетке

  1. Информативная функция. Именно в ядре находится вся информация о наследственности организма.
  2. Функция наследования. Благодаря генам, которые расположены в хромосомах, организм может передавать свои признаки из поколения в поколение.
  3. Функция объединения. Все органоиды клетки объединены в одно целое именно в ядре.
  4. Функция регуляции. Все биохимические реакции в клетке, физиологические процессы регулируются и согласуются ядром.

Один из самых важных органоидов - ядро клетки. Функции его важны для нормальной жизнедеятельности всего организма.

  • 5. Световой микроскоп, его основные характеристики. Фазово-контрастная, интерференционная и ультрафиолетовая микроскопия.
  • 6. Разрешающая способность микроскопа. Возможности световой микроскопии. Изучение фиксированных клеток.
  • 7. Методыавторадиографии, клеточных культур, дифференциального центрифугирования.
  • 8.Метод электронной микроскопии, многообразие его возможностей. Плазматическая мембрана, особенности строения и функций.
  • 9.Поверхностный аппарат клетки.
  • 11.Клеточная стенка растений. Строение и функции – оболочки клеток растений, животных и прокариот, сравнение.
  • 13. Органеллы цитоплазмы. Мембранные органоиды, их общая характеристика и классификация.
  • 14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.
  • 15. Комплекс Гольджи. Строение и функции.
  • 16. Лизасомы, функциональное многообразие, образование.
  • 17. Вакулярный аппарат растительных клеток, компоненты и особенности организации.
  • 18. Митохондрии. Строение и функции митохондрий клетки.
  • 19. Функции митохондрий клетки. Атф и его роль в клетке.
  • 20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
  • 21. Многообразие пластид, возможные пути их взаимопревращения.
  • 23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
  • 24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
  • 25. Ядро в клетках растений и животных, строение, функции, взаимосвязь ядра и цитоплазмы.
  • 26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.
  • 27. Химический состав хромосом: Днк и белки.
  • 28. Уникальные и повторяющиеся последовательности днк.
  • 29.Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.
  • 30. Виды рнк, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: днк-рнк-белок. Роль компонентов в ее реализации.
  • 32. Митотические хромосомы. Морфологическая организация и функции. Кариотип (на примере человека).
  • 33. Репродукция хромосом про- и эукариот, взаимосвязь с клеточным циклом.
  • 34. Политенные и хромосомы типа ламповых щеток. Строение,функции, отличие от метафазных хромосом.
  • 36. Ядрышко
  • 37. Ядерная оболочка строение,функции,роль ядра при взаимодействии с цитоплазмой.
  • 38.Клеточный цикл, периоды и фазы
  • 39. Митоз как основной тип деления.Открытый и закрытый митоз.
  • 39. Стадии митоза.
  • 40.Митоз,общие черты и отличия.Особенности митоза у растений и у животных:
  • 41.Мейоз значение, характеристика фаз, отличие от митоза.
  • 26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.

    И интерфазного ядра в целом пространственная организация хромосом

    В результате разработки методов получения препаратов метафазных хромосом стали возможными проведение анализа числа хромосом, описание их морфологии и размеров. Правда, физические размеры и морфология хромосомы на цитологических препаратах очень сильно

    зависели от стадии митоза и условий приготовления соответствующего цитологического препарата. Прошло много лет, прежде чем было показано, что размеры и морфология хромосом в G2 стадии клеточного цикла мало отличаются от реальных митотических хромосом.

    Развитие клеточной и молекулярной биологии сделало возможными визуализацию индивидуальных хромосом в интерфазном ядре, их

    трехмерную микроскопию и даже идентификацию отдельных районов. Исследования в этом направлении были проведены как на фиксированной, так и на живых клетках. Оказалось, что длинные профазные и прометафазные хромосомы, хорошо знакомые биологам по цитологическим препаратам, представляют собой просто результат растяжения хромосом в процессе распластывания их на стекле. На более поздних стадиях митоза хромосомы более эффективно сопротивляются растяжению и сохраняют свои естественные размеры. В экспериментах на живых клетках используются разнообразные способы флюоресцентного мечения и 4D -микроскопия. Так, для прижизненных наблюдений за индивидуальными хромосомами флюоресцентную метку сначала вводили в ДНК всех хромосом культивируемых в клеток, а затем питательную среду заменяли на

    свободную от флюорохромов, клеткам давали возможность пройти несколько клеточных циклов. В результате в культуре появлялись клетки.

    Этим термином обозначают комплекс ядерной ДНК с белками (гистоны, негистоновые белки).

    Различают гетеро- и эухроматин.

    Гетерохроматин - транскрипционно неактивный, конденсированный хроматин интарфазного ядра. Располагается преимущественно по периферии ядра и вокруг ядрышек. Типичный пример гетерохроматина – тельце Барра.

    Хотя в исторической ретроспективе он изучен хуже, чем эухроматин, новые открытия заставляют считать, что гетерохроматин играет критически важную роль в организации и правильном функционировании геномов, начиная с дрожжей и кончая человеком. Его потенциальное значение подчеркивается тем фактом, что 96% генома млекопитающих состоит из некодирующих и повторяющихся последовательностей. Новые открытия, касающиеся механизмов формирования гетерохроматина, выявили неожиданные вещи

    Эухроматин транскрипционно активная и менее конденсированная часть хроматина, локализуется в более светлых участках ядра между гетерохроматином, богатыегенами.Областьхромосомы, которая плохо окрашивается или не окрашивается вообще. Диффузна винтерфазе. Активнотранскрибируется. Эухроматин характеризуется меньшей по сравнению с гетерохроматином компактизацией ДНК, и в нем главным образом, как уже говорилось, локализуются активно экспрессирующиеся гены.

    Эухроматин, или "активный" хроматин, состоит в основном из кодирующих последовательностей, составляющих лишь небольшую долю (менее 4%) генома млекопитающих.

    Таким образом, собирательный термин "эухроматин" скорее всего обозначает сложное состояние (состояния) хроматина, охватывающее динамичную и сложную смесь механизмов, тесно взаимодействующих друг с другом и с хроматиновой фибриллой и предназначенных для осуществления транскрипции функциональных РНК.