Про психологию. Учения и методики

Законы классической физики описывают. Классическая физика

Физические законы - это не то "как устроена природа на самом деле". Законы придумывают люди, наблюдая за природой. В одних случаях (микромир) природа ведёт себя одним образом, в других случаях (макромир, "обычный мир") - другим. Люди это наблюдают, подбирают подходящие формулы - и появляется закон.

Почему ньютоновский закон всемирного тяготения F = G * m1 * m2 / (r * r) таков? Как он работает? Вряд ли каждая планета, комета, астероид определяют на глаз все ближайшие объекты и с помощью какого-то встроенного калькулятора перемножают, складывают и так решают, куда им лететь. Нет, тут наверняка что-то другое. Но Ньютон не дал ответа на этот вопрос. Он сам не знал, почему планеты именно так себя ведут. Он просто как следует подумал - и догадался, что формула (написанная выше) сюда идеально подходит. Вот и весь закон.

А когда физики наблюдают за природой на квантовом уровне, они замечают, что здесь классические формулы неверны. Можно было бы, конечно, вычеркнуть всю ньютоновскую физику и сказать что "на самом деле" все эти формулы вот такие (если распространить законы квантового мира на большой мир, то получится как раз ньютоновская механика, только в гораздо более сложном виде). Но зачем отказываться от хороших, проверенных формул, если существует множество прикладных областей, где эти формулы удобнее?

P. S. К тому же есть ситуации, в которых квантовые законы совсем плохо подходят (считай, не подходят вообще) для расчётов. Я имею в виду известное "противостояние" теории относительности и квантовой физики. В случае с большими массами и большими скоростями квантовая физика не даёт нужный результат, который даёт теория относительности. А теория относительности, наоборот, не работает в микромире. Ожидаемо, что учёные пытаются разработать новую, универсальную теорию, которая сумеет "взять всё лучшее" из теории относительности и квантовой физики.

Ваш ответ в целом - не противоречит. Ответ в целом хороший.

Но вот фраза "с точки зрения современной науки, мир работает по одному единственному закону, который до сих пор не обнаружен" - это facepalm. Полагаю, таким образом вы сделали отсылку в сторону "теорий всего" (например, суперструнной теории). Но формулировка получилась, на мой взгляд, неудачная.

Это как говорить: "чёрные дыры существуют, но ни одной мы пока не нашли", "человек произошёл от обезьяны, но мы понятия не имеем как" и тому подобное.

Современная наука не может что-то категорично утверждать о том, что она ещё не открыла. Учёные - это люди, которые относятся к своим словам серьёзно. Не открыл, не проверил - помалкивай. Либо можно говорить "есть гипотезы, что", "у нас есть основания предполагать" и т. п. А не ультимативно "на самом деле есть, но мы этого никогда не видели".

Хорошая фраза могла бы быть такой "современная физика признаёт, что в существующих теориях есть пробелы, и учёные надеются устранить эти пробелы с помощью новой теории, которая сумеет объединить уже имеющиеся".

Вроде бы вы сказали то же самое, но ваша фраза задаёт другую тональность. По вашей фразе получается, что современная наука каким-то образом узнала (инсайдерская информация от бога-творца?), что есть некий закон, что вот он есть, но он спрятан ("не там ищете"). И учёные теперь знают, что закон есть ("мамой клянусь"), но никак не могут его пока найти.

Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

Первый закон фотоэффекта можно объяснить с помощью классической физики, но второй и третий законы не находят в ней объяснения.

Дело в том, что согласно классической электродинамике энергия световой волны зависит только от ее амплитуды и не зависит от частоты. Поэтому невозможно объяснить установленный на опыте второй закон фотоэффекта, согласно которому максимальная кинетическая энергия вырванных электронов линейно возрастает при увеличении частоты падающего света. По той же причине не находит объяснения и третий закон фотоэффекта.

Отметим еще одну особенность фотоэффекта, также необъяснимую в рамках классической электродинамики, - это «безынерционность» фотоэффекта.

Опыт показывает, что фототок возникает сразу же при попадании света на электрод 1. Согласно же классической электродинамике для того, чтобы световая волна «раскачала» электрон, сообщив ему энергию, достаточную, чтобы он смог вырваться из металла, должно обязательно пройти некоторое время.

Квантовая физика. 2014

  • Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вопросы и задания к параграфу § 25. Фотоэффект
    Учебник по Физике для 11 класса -> Квантовая физика
  • 1. Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Экспериментальное исследование фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вопросы и задания к параграфу § 19. Природа света. Законы геометрической оптики
    Учебник по Физике для 11 класса -> Электродинамика

  • Иллюстрации по физике для 10 класса -> Механические колебания и волны
  • Почему поезд трогается с места плавно?
    Иллюстрации по физике для 10 класса ->
  • Почему при ударе возникают большие силы?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике

  • Иллюстрации по физике для 10 класса -> Динамика
  • Почему движение молекул никогда не прекращается?
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Почему скрипки и гитары имеют продолговатую форму?
    Учебник по Физике для 10 класса -> Механика
  • Глава 3. Законы сохранения в механике
    Учебник по Физике для 10 класса -> Механика
  • Почему мы не ощущаем движения Земли?
    Учебник по Физике для 10 класса -> Механика
  • Принцип соответствия
    Учебник по Физике для 10 класса ->
  • Границы применимости физических законов и теорий
    Учебник по Физике для 10 класса -> Физика и научный метод познания
  • Научный закон и научная теория
    Учебник по Физике для 10 класса -> Физика и научный метод познания
  • Принцип соответствия Бора
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Соответствие между классической и квантовой механикой
    Учебник по Физике для 11 класса -> Квантовая физика
  • Вероятность в классической физике
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Постулаты Бора
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Применение фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • 2. Теория фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • Поставим опыт к теме 1. Законы фотоэффекта
    Учебник по Физике для 11 класса -> Квантовая физика
  • 3. Гипотеза Планка
    Учебник по Физике для 11 класса -> Квантовая физика
  • 2. «Ультрафиолетовая катастрофа»
    Учебник по Физике для 11 класса -> Квантовая физика

  • Учебник по Физике для 11 класса -> Электродинамика
  • Законы преломления света
    Учебник по Физике для 11 класса -> Электродинамика
  • Законы отражения света
    Учебник по Физике для 11 класса -> Электродинамика
  • Почему между проводниками с током есть только магнитное взаимодействие?
    Учебник по Физике для 11 класса -> Электродинамика
  • Глава 2. Законы постоянного тока
    Учебник по Физике для 11 класса -> Электродинамика
  • Почему электрическое поле действует на незаряженные предметы?
    Учебник по Физике для 11 класса -> Электродинамика
  • Установка для исследования фотоэффекта
    Иллюстрации по физике для 11 класса -> Квантовая физика
  • Демонстрация фотоэффекта
    Иллюстрации по физике для 11 класса -> Квантовая физика
  • Почему небо голубое, а Солнце - желтоватое?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Почему мыльные пузыри кажутся разноцветными?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Как волновая теория объясняет законы отражения и преломления света?
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Законы преломления света
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Законы отражения света
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Природа света. Законы геометрической оптики
    Иллюстрации по физике для 11 класса -> Электродинамика
  • Применение фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Уравнение Эйнштейна для фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Теория фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Законы фотоэффекта
    Интересное о физике -> Энциклопедия по физике
  • Законы преломления
    Интересное о физике -> Энциклопедия по физике
  • Законы отражения
    Интересное о физике -> Энциклопедия по физике
  • НЬЮТОН ИСААК
    Интересное о физике -> Рассказы об ученых по физике
  • Отдача пушки
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Груз и тележка
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Перетягивание каната
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Столкновение одинаковых шаров
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике

Известно, что в конце 19 века было объявлено, что законы классической физики успешно работают только в макромире, а в микромире работают другие – квантовые законы. Эта точка зрения была господствующей в течение всего ХХ века. И вот теперь, когда мы на базе законов классической физики выявили модели фотона, электрона, протона, нейтрона и принципы формирования ядер, атомов и молекул, то возникает вопрос: а не ошиблись ли физики прошлых поколений, похоронив возможности классической физики решать задачи микромира? Чтобы ответить на этот вопрос, давайте внимательно проанализируем истоки недоверия к классической физике при поиске приемлемого варианта интерпретации экспериментальной информации об излучении абсолютно черного тела (рис. 119).

Все началось с установления закона излучения абсолютно черного тела (рис. 119). Вывод математической модели этого закона, выполненный Максом Планком в начале ХХ века, базировался на понятиях и представлениях, которые, как считалось, противоречат законам классической физики.

Рис. 119. а) графическая модель абсолютно черного тела;

b) – зависимость плотности излучения абсолютно чёрного тела от длины волны, излучаемых фотонов

Планк ввел в математическую модель закона излучения абсолютно черного тела константу с размерностью механического действия, что явно противоречило представлениям о волновой природе электромагнитного излучения. Тем не менее, его математическая модель достаточно точно описывала экспериментальные зависимости этого излучения. Введенная им константа указывала на то, что излучение идет не непрерывно, а порциями. Это противоречило закону излучения Релея - Джинса, который базировался на представлениях о волновой природе электромагнитного излучения, но описывал экспериментальные зависимости лишь в диапазоне низких частот (236), то есть больших длин волн излучения (рис. 119).

Прежде всего, приведем формулу Релея - Джинса, которая удовлетворительно описывает экспериментальную закономерность низкочастотного диапазона излучения (рис. 119). Основываясь на волновых представлениях об электромагнитном излучении, они установили, что энергия , заключенная в объёме абсолютно черного тела, определяется зависимостью

, (236)

где - частота излучения; - объём полости абсолютно черного тела (рис. 119); - скорость света; - постоянная Больцмана; - абсолютная температура излучения.

Разделив левую и правую части соотношения (236) на объём , получим объёмную плотность электромагнитного излучения

. (237)

Вывод этой формулы базируется на представлении о существовании в замкнутой полости абсолютно черного тела (рис. 119, b) целого числа стоячих волн электромагнитного излучения с частотой .

Чтобы получить математическую модель, которая описывала бы весь спектр электромагнитного излучения абсолютно черного тела, Макс Планк постулировал, что излучение идет не непрерывно, а порциями так, что энергия каждой излученной порции оказывается равной , и формула для расчета плотности электромагнитного излучения абсолютно черного тела оказалась такой (рис. 119)

. (238)

Величина - константа с механической размерностью действия. Причем смысл этого действия в то время был совершенно неясен. Тем не менее, математическая модель (238), полученная Планком, достаточно точно описывала экспериментальные закономерности излучения абсолютно черного тела (рис. 119).

Как видно, выражение в формуле (238) играет роль некоторого существенного дополнения к формуле (237) Релея - Джинса, суть которого сводится к тому, что - энергия одного излученного фотона.

Поскольку в математической модели закона излучения абсолютно черного тела (238) присутствует математическая модель закона излучения Релея - Джинса (236), то получается, что планковский закон излучения абсолютно черного тела базируется на исключающих друг друга волновых и корпускулярных представлениях о природе излучения.

Несовместимость непрерывного волнового процесса излучения с парциальным процессом явилась веским основанием для признания кризиса классической физики. С этого момента физики начали полагать, что сфера действия законов классической физики ограничена макромиром. В микромире, считают они, работают другие, квантовые законы, поэтому физика, описывающая микромир, должна называться квантовой физикой. Следует отметить, что Макс Планк пытался разобраться со смесью таких физических представлений и вернуть их на классический путь развития, но ему не удалось решить эту задачу.

Спустя почти сто лет нам приходится констатировать, что граница между законами классической и квантовой физики до сих пор не установлена. По-прежнему испытываются значительные трудности при решении многих задач микромира и многие из них считаются не разрешимыми в рамках сложившихся понятий и представлений, поэтому мы вынуждены возвратиться к попытке Макса Планка выполнить вывод математической модели закона излучения абсолютно черного тела на основе классических представлений.

Конечно, чтобы глубже понять физический смысл планковского дополнения надо иметь представление о магнитной структуре фотона, так как в этой структуре скрыт физический смысл самой постоянной Планка . Поскольку произведение описывает энергии фотонов всей шкалы фотонных излучений, то в размерности постоянной Планка и скрыта магнитная структура фотона. Нами уже установлено, что фотон имеет такую вращающуюся магнитную структуру, центр масс которой описывает длину волны , равную его радиусу . В результате математическое выражение константы Планка принимает вид

Как видно, константа Планка имеет явную механическую размерность момента импульса. Хорошо известно, что постоянством момента импульса управляет закон сохранения момента импульса и сразу становится ясной причина постоянства постоянной Планка.

Прежде всего, понятие «закон сохранения момента импульса» является понятием классической физики, а точнее - классической механики. Он гласит, что если сумма моментов внешних сил, действующих на вращающееся тело, равна нулю, то момент импульса, действующий на такое тело остаётся постоянным по величине и направлению.

Конечно, фотон не является твердым телом, которое только вращалось бы без перемещения в пространстве, но он имеет массу и у нас есть все основания полагать, что роль массы у фотона выполняет вращающаяся относительно оси магнитная субстанция, которая вращается и перемещается в пространстве со скоростью света.

Из математической модели (239) постоянной Планка следует, что магнитная модель фотона должна быть такой, чтобы одновременное изменение массы , радиуса и частоты вращающихся магнитных полей фотона оставляло бы их произведение, отраженное в математическом выражении постоянной Планка (239), постоянным.

Например, с увеличением массы (энергии) фотона уменьшается длина его волны.Опишем повторно, как это изменение реализуется постоянной Планка (239) в модели фотона (рис. 15 и 16).

Поскольку постоянством константы Планка управляет закон сохранения момента импульса , то с увеличением массы фотона растет плотность его магнитных полей (рис. 15 и 16) и за счет этого увеличиваются магнитные силы , сжимающие фотон, которые все время уравновешиваются центробежными силами инерции, действующими на центры масс этих полей. Это приводит к уменьшению радиуса фотона, который всегда равен длине его волны . Но поскольку радиус в выражении постоянной Планка возводится в квадрат, то для сохранения постоянства постоянной Планка (239) частота колебаний фотона должна при этом увеличиться. В силу этого незначительное изменение массы фотона автоматически изменяет его радиус и частоту так, что момент импульса (постоянная Планка) остается постоянным.

Таким образом, фотоны всех частот, сохраняя свою магнитную структуру, меняют массу, частоту и радиус так, чтобы . То есть принципом этого изменения управляет закон сохранения момента импульса.

Если задаться вопросом: почему фотоны всех частот движутся в вакууме с одинаковой скоростью? То получается следующий ответ. Потому что изменением массы фотона и его радиуса управляет закон локализации фотонов таким образом, что при увеличении массы фотона его радиус уменьшается и наоборот.

Тогда для сохранения постоянства константы Планка при уменьшении радиуса частота должна пропорционально увеличиваться. В результате их произведение остаётся постоянным и равным . При этом скорость центра масс фотона (рис. 20, а) изменяется в интервале длины волны таким образом, что её средняя величина остаётся постоянной и равной и не принимает нулевых значений (рис. 20, а).

Таким образом, постоянством константы Планка управляет один из самых фундаментальных законов классической физики (а точнее - классической механики) - закон сохранения момента импульса. Это - чистый классический механический закон, а не какое - то мистическое кантовое действие, как считалось до сих пор. Поэтому появление постоянной Планка в математической модели закона излучения абсолютно черного тела не даёт никаких оснований утверждать о неспособности классической физики описывать процесс излучения этого тела. Наоборот, самый фундаментальный закон классической физики - закон сохранения момента импульса как раз и участвует в описании этого процесса.

Таким образом, планковский закон излучения абсолютно черного тела является законом классической физики и нет никакой нужды вводить понятие «Квантовая физика». Существует и классический вывод формулы (239) Планка. Он базируется на корпускулярных представлениях о структуре фотонов. Представляем этот вывод.

Так как излучение абсолютно черного тела представляет собой совокупность фотонов, каждый из которых имеет только кинетическую энергию , то мы должны ввести в математическую модель закона максвелловского распределения кинетическую энергию фотона и тепловую энергию совокупности излученных фотонов

. (240)

Далее, мы должны учесть, что фотоны излучаются электронами атомов при их энергетических переходах. Каждый электрон может совершать серию переходов между энергетическими уровнями, излучая при этом фотоны разной энергии. Поэтому полное распределение объёмной плотности энергий излученных фотонов будет состоять из суммы распределений, учитывающих энергии фотонов всех энергетических уровней. С учетом изложенного, закон Максвелла, учитывающий распределения энергий фотонов всех энергетических уровней атома, запишется так

где - главное квантовое число, определяющее номер энергетического уровня электрона в атоме.

Известно, что сумма ряда (241) равна

. (242)

Умножая правую часть формулы (242) на константу Планка и на коэффициент из формулы (236) Релея – Джинса, мы получим результат, описывающий закономерность изменения плотности фотонов в полости чёрного тела (рис. 119, a) от частоты фотонов или их длины волны (рис. 119, b)

. (243)

Это и есть закон излучения абсолютно черного тела (243), полученный Максом Планком в 1901г. Выражение (243) незначительно отличается от выражения (242) коэффициентом, который, как считалось до сих пор, учитывает число степеней свободы электромагнитного излучения абсолютно черного тела. По мнению Э.В. Шпольского его величина зависит от характера волн электромагнитного излучения и может изменяться от до . Однако, в рамках изложенных представлений переменный коэффициент

(244)

характеризует плотность фотонов в полости абсолютно черного тела. Более точное значение постоянной составляющей этого коэффициента можно определить экспериментально.

Таким образом, мы вывели закон излучения абсолютно черного тела (243), основываясь на чистых классических представлениях и понятиях, и видим полное отсутствие оснований полагать, что этот закон противоречит классической физике. Наоборот, он является следствием законов этой физики. Все составляющие математической модели планковского закона (238) излучения абсолютно черного тела приобрели давно присущий им четкий классический физический смысл.

Обратим особое внимание на то, что в спектре абсолютно чёрного тела присутствуют фотоны (рис. 15, 16 и 119) разных радиусов , а максимумы температур (2000 и 1500 град. С, рис. 119) формирует совокупность фотонов с определёнными радиусами, величины которых достаточно точно определяет формула Вина

. (245)

Например, максимум температуры 2000 С формирует совокупность фотонов с радиусами

Это - невидимые фотоны инфракрасного диапазона и у нас сразу возникает возражение. Опыт подсказывает нам, что температуру 2000 С формируют видимые фотоны светового диапазона. Такая точка зрения - яркий пример ошибочности наших интуитивных представлений. Поясним её суть на следующем примере.

Солнечный морозный зимний день с температурой минус 30 град. Цельсия с хрустящим снегом под ногами. Обилие солнечного света формирует у нас иллюзию максимального количества световых фотонов, окружающих нас, и мы готовы уверенно констатировать, что находимся в среде фотонов со средней длиной волны (точнее теперь со средним радиусом) светового фотона (табл. 2). Но закон Вина (245) поправляет нас, доказывая, что мы находимся в среде фотонов, максимальная совокупность которых имеет радиусы (длины волн), равные (табл. 2).

Как видите, наша интуитивная ошибка более двух порядков. В яркий солнечный зимний день при морозе минус 30 градусов мы находимся в среде с максимальным количеством не световых, а инфракрасных фотонов с длинами волн (или радиусами) .

Попутно отметим, что длины волн (радиусы) фотонов изменяются в интервале 16 порядков (рис. 15, 16). Самые большие радиусы () имеют фотоны реликтового диапазона (табл. 2), формирующие минимально возможную температуру вблизи абсолютного нуля, а самые маленькие () - гамма фотоны (табл. 2) вообще не формируют никакую температуру. Формированием структуры фотонов и их поведением управляют 7 констант.

Представленная информация убеждает нас в справедливости формулы Вина (245) и мы можем найти радиусы фотонов, совокупность которых формирует второй максимум температуры (рис. 119, b) в полости чёрного тела (рис. 119, а).

. (248)

Как видно (247 и 248), с увеличением температуры радиусы фотонов, совокупность которых формирует температуру, уменьшаются. Это значит, что температуру вблизи абсолютного нуля формируют фотоны, имеющие самые большие радиусы, и мы сейчас убедимся в этом (рис. 120).

Рис. 120: а) фото мизерной части Вселенной; b) зависимость плотности излучения Вселенной от длины волны: теоретическая – тонкая линия; экспериментальная – жирная линия

Считалось, что формула Вина (245) справедлива только для замкнутых систем (рис. 119, а). Однако, мы сейчас увидим, что она идеально описывает не только излучение абсолютно черного тела (рис. 119, а), как замкнутой системы, но и Вселенной – абсолютно незамкнутой системы (рис. 120, а).

Теоретическая зависимость плотности излучения Вселенной (рис. 120, b – тонкая линия) подобна зависимости плотности излучения абсолютно черного тела (рис. 119, а) описываемого формулой Планка (243).

Максимум излучения Вселенной зафиксирован экспериментально при температуре (рис. 120, b, точка А) и имеет длину волны . Формула Вина (245) даёт такой же результат

(249)

Это яркое доказательство того, что закон Вина справедлив не только для замкнутых систем, таких, как абсолютно чёрное тело (рис. 119, а), но для абсолютно незамкнутых, таких, как Вселенная (рис. 120, a).

Чтобы найти источник максимума излучения Вселенной (рис. 120, b, точки А и 3), обратим внимание на то, что наблюдаемая нами Вселенная состоит из 73 процентов водорода, 24 процентов гелия и 3 процентов более тяжелых элементов. Это значит, что спектр Вселенной (рис. 120, b) формируют фотоны, излучаемые в основном рождающимися атомами водорода. Известно также, что рождение атомов водорода сопровождается процессом сближения электрона с протоном, в результате которого электрон излучает фотоны.

Совпадение теоретической величины длины волны (рис. 120, b, точка 3) с её экспериментальным значением (рис. 120, b, точка А), доказывает корректность использования формулы Вина (245) для анализа спектра излучения Вселенной.

Фотоны с длиной волны обладают энергией

Энергия соответствует энергии связи электрона с протоном в момент пребывания его на 108 энергетическом уровне. Она равна энергии фотона, излучённого электроном в момент установления контакта с протоном и начала формирования атома водорода.

Процесс сближения электрона с протоном ступенчатый. Он протекает при их совместном переходе из среды с высокой температурой в среду с меньшей температурой или, проще говоря, при удалении от звезд. Сближение электрона с протоном идёт ступенчато. Количество пропускаемых ступеней в этом переходе зависит от градиента температуры среды, в которой движется родившийся атом водорода. Чем больше градиент температуры, тем больше ступеней может пропустить электрон, сближаясь с протоном.

Естественно, что после формирования атомов водорода наступает фаза формирования молекул водорода, которая также должна иметь максимум излучения. Известно, что атомарный водород переходит в молекулярный в интервале температур .

Радиусы фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале:

; (251)

, (252)

cоответствующем интервалу длин волн фотонов, форирующих максимум в зоне точки С (рис. 120, b).

Таким образом, у нас есть основания полагать, что максимум излучения Вселенной, соответствующий точке С (рис. 120), формируется фотонами, излучаемыми электронами при синтезе атомов и молекул водорода.

Однако на этом не заканчиваются процессы фазовых переходов водорода. Его молекулы, удаляясь от звезд, проходят зону последовательного понижения температуры, минимальная величина которой равна Т=2,726 К. Из этого следует, что молекулы водорода проходят зону температур, при которой они сжижаются. Она известна и равна . Поэтому есть основания полагать, что должен существовать ещё один максимум излучения Вселенной, соответствующий этой температуре. Длина волны фотонов, формирующих этот максимум, равна

. (253)

Этот результат почти полностью совпадает с максимумом в точке на рис. 120 и доказывает, что спектр излучения Вселенной формируется процессами синтеза атомов и молекул водорода, а также - сжижения молекул водорода. Эти процессы идут непрерывно и не имеют никакого отношения к выдуманному Большому взрыву.

Как видно (246 - 253), формула Вина (245) справедлива не только для замкнутых систем, каким является полость абсолютно чёрного тела (рис. 119, а), но и для незамкнутых, подобных Вселенной.

Термин классическая физика относится к той физике, которая существовала до появления квантовой механики. Классическая физика включает ньютоновские законы движения частиц, теорию электромагнитного поля максвелла - Фарадея и общую теорию относительности Эйнштейна. Но это нечто большее, чем просто конкретные теории конкретных явлений; это ряд принципов и правил - базовая логика, подчиняющая себе все явления, для которых несущественна квантовая неопределенность
. Этот свод общих правил классической механикой называется.

Задача классической механики в предсказании будущего состоит. Великий физик восемнадцатого века Пьер - Симон Лаплас выразил это в знаменитой цитате:

"Состояние вселенной в данный момент можно рассматривать как следствие ее прошлого и как причину ее будущего. Мыслящее существо, которое в определенный момент знало бы все движущие силы природы и все положения всех объектов, из которых состоит мир, могло бы - если бы его разум был достаточно обширен для того, чтобы проанализировать все эти данные, - выразить одним уравнением движение и самых больших тел во вселенной, и мельчайших атомов; для такого интеллекта не осталось бы никакой неопределенности и будущее открылось бы перед его взором точно так же, как и прошлое. В классической физике, если вы знаете все о состоянии системы в некоторый определенный момент времени, а также знаете уравнения, определяющие изменения, происходящие в системе, вы можете предсказать будущее. Именно это мы имеем в виду, говоря, что классические законы физики детерминистичны.

Простые динамические системы и пространство состояний.

Совокупность объектов (частиц, полей, волн - чего угодно) называется системой. Систему, представляющую собой всю вселенную или настолько изолированную от всего остального, что она ведет себя так, будто ничего больше не существует, называют замкнутой.

Чтобы почувствовать, что такое детерминистичность и обратимость, мы начнем с очень простого примера замкнутых систем. Они значительно проще тех вещей, которые мы обычно изучаем в физике, но они подчиняются правилам, которые являются предельно упрощенным вариантом классической механики. Представьте себе абстрактный объект, имеющий лишь одно состояние. Можно, например, представить монету, приклеенную к столу, которая всегда показывает свой аверс. На жаргоне физиков совокупность всех состояний, занимаемых системой, называется пространством состояний. Это не обычное пространство; это математическое множество, элементы которого соответствуют возможным состояниям системы. В нашем случае пространство состояний содержит лишь одну точку, а именно аверс (или просто а), поскольку система имеет лишь одно состояние. Предсказать будущее такой системы чрезвычайно просто: с ней никогда ничего не происходит, и результатом любого наблюдения всегда будет а.

Следующая по простоте система имеет пространство состояний, содержащее две точки; в этом случае у нас имеется один абстрактный объект и два возможных состояния. Можете представлять себе монету, выпадающую либо аверсом, либо реверсом (а или Р) - рис. 1. в классической механике считается, что системы изменяются плавно, без прыжков или перерывов. Такое поведение называют непрерывным. Очевидно, что из состояния аверс нельзя непрерывно перейти в состояние реверс. Движение в данном случае неизбежно происходит дискретными скачками. Так что давайте предположим, что время тоже идет дискретными шагами, которые нумеруются целыми числами. Мир с такой дискретной эволюцией можно стробоскопическим назвать.

Система, которая с ходом времени изменяется, называется динамической. Динамическая система - это не только пространство состояний. Она также включает закон движения, или динамический закон. Это правило, которое говорит, какое состояние станет следующим после текущего.

Один из простейших динамических законов состоит в том, что состояние в следующий момент будет таким же, как сейчас. Тогда в нашем примере возможны две истории: а. и Р. другой динамический закон диктует, что каким бы ни было текущее состояние, следующее за ним будет противоположным. Можно нарисовать диаграммы, иллюстрирующие эти два закона. На рис. 2 показан первый закон, когда а всегда переходит в а и стрелка от Р идет к Р. и вновь будущее очень легко предсказать: если начать с а, система останется в состоянии а; если начать с Р, система останется в Р.

Диаграмма для второго возможного закона на рис представлена. 3, где стрелки идут от а к Р и от Р к а. будущее по-прежнему можно предсказывать. Например, если начать с а, то история будет: а Р а Р а Р а Р а Р. если же начать с Р, получится история: Р а Р а Р а Р а ….

Можно также записать эти динамические законы в виде формул. Переменные, описывающие систему, называются степенями свободы. У нашей монеты одна степень свободы, которую можно обозначить греческой буквой сигма. Сигма только два возможных значения имеет? = 1 и? = - 1 соответственно для а и Р. нам также нужен символ для обозначения времени. Когда рассматривается непрерывное течение времени, его принято обозначать t. но у нас эволюция дискретна, и мы будем использовать n. состояние в момент n обозначается выражением (n), то есть значение? В момент n. параметр n последовательно принимает значения всех натуральных чисел, начиная с 1.

Запишем уравнения эволюции для двух рассматриваемых законов. Первый из них гласит, что никаких изменений не происходит. Его уравнение - (n 1) = (n. другими словами, каким бы ни было значение? На n - м шаге, то же значение будет и на следующем шаге.

Второе уравнение эволюции имеет вид (n 1) = - (n), что означает перемену состояния на каждом шаге.

Поскольку в обоих случаях будущее поведение полностью детерминировано начальным состоянием, такие законы называются детерминистическими. Все фундаментальные законы классической механики - детерминистические.

Давайте ради интереса обобщим систему, увеличив число состояний. Вместо монеты можно использовать шестигранную игральную кость, имеющую шесть воз - можных состояний (рис. 4.

Теперь число возможных законов значительно возрастает и их становится нелегко описать словами и даже формулами. Проще всего рассмотреть диаграмму вроде приведенной на рис. 5. из нее видно, что номер состояния, заданный в момент n, увеличивается на единицу в следующий момент n 1. это работает, пока мы не дойдем до состояния 6, где диаграмма предписывает вернуться в состояние 1 и повторить процесс. Такая бесконечно повторяющаяся схема называется циклом. Например, если начать с состояния 3, то история будет иметь вид: 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, . назовем эту схему динамическим законом 1.

На рис. 6 показан другой закон - динамический закон 2. он выглядит несколько более запутанным, но логически он идентичен предыдущему: в обоих случаях система бесконечно обходит в цикле все шесть возможных состояний. Внимание! Только в том случае, если переименовать состояния, то динамический закон 2 станет точно таким же, как динамический закон 1.

Но не все законы логически эквивалентны. Рассмотрим, например, закон, показанный на рис. 7. этот динамический закон 3 имеет два цикла. Таким образом, если начать двигаться в одном из них, то невозможно попасть в другой. Тем не менее этот закон детерминистичен совершенно. С какого бы состояния вы ни начали, будущее остается предопределенным. Например, если начать с состояния 2, получится история: 2, 6, 1, 2, 6, 1, … и состояние 5 никогда не будет достигнуто. В случае если же начать с состояния 5, то история будет иметь вид: 5, 3, 4, 5, 3, 4, … и недостижимым окажется состояние 6.

На рис. 8 показан динамический закон 4 с тремя циклами.

Понадобилось бы много времени, чтобы нарисовать все возможные динамические законы в системе с шестью состояниями.

Правила, которые не разрешены: минус первый закон.

Согласно правилам классической физики допустимы не все законы. Для динамического закона недостаточно быть детерминистичным; он еще должен быть обратимым.

Смысл обратимости (в контексте физики) можно описать несколькими способами. Самый простой из них - сказать, что можно развернуть все стрелки и получившийся в результате закон останется детерминистичным. Другой способ - сказать, что закон детерминистичен как в прошлом, так и в будущем. Вспомним замечание Лапласа о том, что ". Для такого интеллекта не осталось бы никакой неопределенности, и будущее открылось бы перед его взором точно так же, как и прошлое". Можно ли придумать закон, который будет детерминистичным в будущем, но не в прошлом? Иными словами, можно ли привести пример необратимого закона? Да, можно. Рассмотрим рис. 9.

Закон, представленный на рис. 9, для любого состояния говорит, куда надо перейти дальше. В том случае, если вы находитесь в состоянии 1, то переходите в 2. если в 2, то в 3. если в 3, то в 2. нет никакой неоднозначности относительно будущего. Иное дело - прошлое. Допустим, вы находитесь в состоянии 2. где вы были в предыдущий момент? Вы могли прийти из состояния 3 или 1. диаграмма об этом ничего не говорит. Хуже того, если рассмотреть обратный закон, то окажется, что нет состояния, которое вело бы к 1; состояние 1 не имеет прошлого. Закон, изображенный на рис. 9, необратим. Он дает пример ситуации, запрещенной принципами классической физики.

Обратите внимание, что если развернуть стрелки на рис. 9, то получится закон, представленный рис. 10, который не может однозначно сказать, как двигаться в будущем.

Есть очень простое правило, говорящее, когда диаграмма представляет детерминистичный и обратимый закон. В случае если у каждого состояния есть ровно одна стрелка, ведущая к нему, и ровно одна стрелка, выходящая из него, то это допустимый детерминистичный обратимый закон. Сформулируем это в виде слогана: должна быть только одна стрелка, указывающая, откуда вы пришли, и только одна стрелка, указывающая, куда вам следует пойти.

Правило, согласно которому динамические законы должны быть детерминистичными и обратимыми, настолько важно для классической физики, что в учебных курсах о нем порой попросту забывают упомянуть. У него даже нет названия. Можно назвать его первым законом, но, к сожалению, у нас уже есть два первых закона - первый закон ньютона и первое начало термодинамики. Поэтому, чтобы обозначить приоритет, мы вынуждены будем отступить и обозначить этот принцип как минус первый закон, и это, несомненно, самый фундаментальный из всех физических законов - закон сохранения информации. Сохранение информации - это по сути правило, согласно которому у любого состояния есть одна входящая стрелка и одна исходящая. Тем самым гарантируется, что вы никогда не собьетесь с пути, откуда бы вы ни стартовали.

Динамические системы с бесконечным числом состояний.

До сих пор во всех наших примерах пространство состояний имело конечное число элементов. Но нет причин, мешающих нам рассмотреть динамическую систему с бесконечным числом состояний. Представьте себе, например, линию с бесконечным числом отдельных точек вдоль нее, подобно железнодорожной линии с бесконечной последовательностью станций в обоих направлениях. Допустим теперь, что некий маркер может в соответствии с некоторым правилом прыгать от одной точки к другой. Для описания такой системы мы пометим все точки вдоль линии целыми числами подобно тому, как нумеровали состояния в рассмотренных ранее примерах. Поскольку мы уже использовали букву n для дискретных шагов во времени, давайте использовать заглавную N для отслеживания маршрута. История маркера будет представлять собой функцию N (n), которая возвращает место N для каждого момента времени n. короткий участок этого пространства состояний изображен на рис. 11. очень простой динамический закон для такой системы показан на рис. 12. Он состоит в сдвиге маркера на одну позицию в положительном направлении с каждым шагом по времени.

Это правило допустимо, поскольку у каждого состояния только одна входящая стрелка и одна исходящая.

Такое правило нетрудно записать в форме уравнения:
(n 1) N = N (n) 1. (1).

А вот другие возможное правило:
(n 1) N = N (n) 2, (2).

По формуле (1), где бы ни началось движение, вы в конце концов доберетесь до любой точки, двигаясь либо в будущее, либо в прошлое. Можно сказать, что тут имеет место один бесконечный цикл. А вот по формуле (2), начав с нечетного значения N, вы никогда не попадете на четное, и наоборот. Поэтому мы говорим, что тут наличествуют два бесконечных цикла.

Можно также добавить к системе качественно иные состояния, создав с их участием дополнительные циклы, как показано на рис. 13. если начать с числа, то мы по-прежнему будем двигаться по верхней линии, как и на рис. 12. но если начать с буквы A или B, то мы закрутимся в цикле между ними. Так что возможна смешанная ситуация, когда в одних случаях мы обходим лишь некоторые состояния, а в других - движемся в бесконечность.

Циклы и законы сохранения.

Когда пространство состояний разделено на несколько циклов, система остается в том цикле, в котором начала движение. Каждый цикл имеет свой собственный динамический закон, но все они - часть одного пространства состояний, поскольку описывают одну динамическую систему. Рассмотрим систему с тремя циклами. Каждое из состояний 1 и 2 представляет собой отдельный цикл, а состояния 3 и 4 принадлежат третьему (рис. 14.

Всякий раз, когда динамический закон делит пространство состояний на подобные отдельные циклы, система "Запоминает", с какого состояния мы стартовали. Подобная память называется законом сохранения; он говорит нам, что нечто остается неизменным с течением времени. Чтобы придать закону сохранения количественную форму, припишем каждому циклу численное значение, обозначаемое Q. в примере на рис. 15 три цикла обозначены как Q = 1, Q = - 1 и Q = 0. каким бы ни было значение Q, оно всегда остается неизменным, поскольку динамический закон не позволяет перепрыгивать с одного цикла на другой. Проще говоря, значение Q сохраняется.

Пределы точности.

Лаплас был чрезмерно оптимистичен относительно предсказуемости мира даже в рамках классической физики. Он, конечно, согласился бы с тем, что для предсказания будущего потребуется идеальное знание управляющих миром динамических законов и чудовищная вычислительная мощь, которую он характеризовал как разум, который "Достаточно Обширен для Того, Чтобы Проанализировать все эти Данные". Но есть еще один момент, который он, возможно, недооценил: способность знать начальные условия с почти идеальной точностью. Представьте себе игральную кость с миллионом граней, которые помечены символами, похожими на обычные цифры, но слегка различающимися, так что получается миллион различимых меток. Таким образом, если знать динамический закон и суметь распознать начальную метку, то можно предсказать будущую историю кости. Но если титанический лапласовский интеллект страдает небольшими проблемами со зрением, из-за чего не различает очень похожие метки, то его предсказательная способность будет ограниченной.

В реальном мире все обстоит еще хуже; пространство состояний не просто необъятно по числу точек, оно непрерывно и бесконечно. Другими словами, оно размечено совокупностью вещественных чисел, вроде тех, что задают координаты частиц. Множество вещественных чисел столь плотно, что любое из них имеет бесконечное число сколь угодно близких соседей. Способность различать соседние значения этих чисел - это "Разрешающая Способность", характеризующая любой эксперимент, и для любого реального наблюдателя она ограничена. В большинстве случаев крошечные различия в начальных условиях (стартовом состоянии) приводят к значительным расхождениям в результатах. Это явление называют хаосом. Лишь в том случае, если система хаотическая (а таково большинство систем), то как бы велика ни была разрешающая способность, время, в течение которого система будет предсказуемой, ограничено. Идеальная предсказуемость недостижима просто потому, что мы ограничены в своей разрешающей способности. Л. сасскинд, Д. грабовски. Теоретический минимум.