Про психологию. Учения и методики

Какое соотношение фенотипов соответствует комплементарности. Комплементарное взаимодействие

Одно время от разный учеников стали приходить задания по генетике про наследование окраски шерсти у хорьков. Понятно, что «хорьки» (как норки, кролики, лисы) — это лишь модель для закрепления темы по взаимодействию неаллельных генов.

В этой статье приводятся только условия 5 таких заданий про хорьков. Эти задания надо воспринимать комплексно.

1. От скрещивании черного хорька со светло-коричневым в первом поколении все щенки были черными. При скрещивании хорьков из первого поколения между собой наблюдалось расщепление по фенотипам: черные, серые, коричневые и светло-коричневые. Расщепление было близко к 9: 3: 3: 1 соответственно. Напишите все генотипы (родителей и потомства).

2. При скрещивании черного и коричневого хорьков было получено 10 щенков, 6 из которых были коричневыми, а 4 – черными. Определите генотипы родителей и потомства. Какое расщепление по фенотипам и генотипам следует ожидать при скрещивании черного и коричневого хорьков из первого поколения?

3. При скрещивании двух черных хорьков в потомстве были получены черные и серые хорьки. Предположите, как распределились эти признаки среди 12 щенков. Какое потомство следует ожидать при скрещивании черных и серых хорьков из первого поколения между собой?

4. С какой вероятностью может появиться светло-коричневый щенок у черных родителей? Свой ответ подтвердите генотипами родителей и предполагаемого потомства.

5. При скрещивании коричневого хорька с черным в первом поколении были получены 7 черных и 2 серых щенка. Определите генотипы родителей потомства. Какое расщепление по фенотипам и генотипам следует ожидать при скрещивании серых хорьков из первого поколения между собой?

Из условия первой задачи мы видим, что всего окрасок шерсти хорьков от взаимодействия генов В и D наблюдается 4. Больше всего образовывалось хорьков с черным мехом 9, поровну с серым и коричневым по 3 и меньше всех 1 светло-коричневых.

А мы знаем, что классическое отношение 9:3:3:1 является справедливым при дигибридном скрещивании (и только по Менделю), когда изучается наследование сразу двух разных признаков, находящихся обязательно в двух разных парах гомологичных хромосом. Когда мы получаем такое соотношение фенотипов? Лишь во втором поколении от скрещивания дигетерозигот друг с другом, когда каждая скрещиваемая особь дает по четыре «сорта» гамет.

В этих же заданиях речь идет об изучении наследования всего одного признака, но контролируемого двумя разными генами В и D (естественно они уже не являются аллельными, но к ним нельзя и применить правило дигибридного скрещивания Менделя для независимых пар генов), так как гены В и D как то взаимодействуют друг с другом. , что отношение 9: 3: 3: 1 справедливо и для одной из форм комплементарного взаимодействия неаллельных генов.

Именно по задаче 1, мы видим, что окраска шерсти у хорьков «распалась» на четыре формы в соотношении 9:3:3:1, а это возможно, если B доминантный отвечает за один какой-то цвет, D доминантный – за другой какой-то цвет, и если аллели В и D оба доминантные объединятся в одном организме (комплементарное взаимодействие), то вызовут проявление образования третьей окраски. Если нет ни одного доминантного аллеля и генотип особи ввdd, то проявится четвертая окраска.

Другим типом взаимодействия неаллельных генов является комплементарность. Она заключается в том, что развитие признака требует наличия в генотипе доминантных аллелей двух определенных генов. Классическим примером комплементарного взаимодействия генов является наследование окраски лепестков венчика цветов душистого горошка. При скрещивании цветов белой окраски у потомства появляется новый признак – лепестки венчика красной окраски, а во втором поколении расщепление составляет 9 красных к 7 белых.

М – хромоген N – хромогеназа

m – отсутствие n – отсутствие

Р: ♀ ММnn ´ ♂ mmNN

белые белые

по генотипу: дигетерозиготны

по фенотипу: пурпурно – красные

P: ♀ MnNn ´ ♂ MmNn

F 2: по решётке Пеннета

♀ ♂ MN Mn mN mn
MN MMNN MMNn MmNN MmNn
Mn MMNn MMnn MmNn Mmnn
mN MmNN MmNn mmNN mmNn
mn MmNn Mmnn mmNn mmnn

по генотипу: 1: 2: 2: 1: 4: 1: 2: 2: 1

по фенотипу: 9: 7

пурпурно - красные белые

Таким образом, при комплементарном взаимодействии генов также наблюдается отклонение от закона независимого наследования.

У человека комплементарным действием обладают гены пигментации волос:

m 1 – значительное количество меланина

m 2 - среднее количество меланина

m 3 – малое количество меланина

R - красный пигмент

r - отсутствие пигмента

Сочетание аллелей указанных генов дают весь спектр окрасок волос. При этом степень доминирования следующая: тm 1 >m 2 >R>m 1 >r

Генотипы: Фенотип:

m 1 m 1 RR брюнет (с глянцем)

m 1 m 1 Rr брюнет (лоснящиеся волосы)

m 1 m 1 rr брюнет

m 1 m 2 RR темный шатен

m 1 m 3 rr шатен

m 2 m 2 Rr каштановый

m 2 m 2 RR темно-рыжий

М 2 m 3 RR темно-рыжий

m 3 m 3 RR ярко-рыжий

m 3 m 3 Rr блондин с рыжеватым оттенком

m 3 m 3 rr блондин

Другим примером комплементарного взаимодействия является продукция клетками человека противовирусного вещества – интерферона. Его синтез зависит от присутствия в генотипе двух доминантных генов из разных аллельных пар:

Фенотипический радикал: Фенотип:

А-В - интерферон синтезируется

ааВ – интерферон не синтезируется



А-вв интерферон не синтезируется

аавв интерферон не синтезируется

Наследование нормального гемоглобина зависит от 4-х доминантных генов из разных аллельных пар. Только при фенотипическом радикале А-В-С-Д- гемоглобин связывается с О 2 (оксигемоглобин) и с СО 2 (карбоксигемоглобин). При всех других сочетаниях генов как-то.

Неаллельные гены также могут взаимодействовать между собой. При этом их принцип взаимодействия несколько иной, чем доминантно-рецессивные отношения как в случае аллельных генов.

Правильнее говорить не о взаимодействии генов, а о взаимодействии их продуктов, т. е. взаимодействии белков, которые синтезируются на основе генов.

Комплементарное взаимодействие неаллельных генов - это такое их взаимодействие, при котором их продукты дополняют действие друг друга.

Примером комплиментарного взаимодействия генов является цвет глаз у мушки дрозофилы. У мушек с генотипом S-B- обычные красные глаза, ssbb - белые, S-bb - коричневые, ssB- - ярко-алые. Таким образом, если оба неаллельных гена рецессивны, то никакой пигмент не синтезируется, и глаза становятся белыми. При наличии только доминантного гена S появляется коричневый пигмент, а только доминантного B - ярко-алый. Если же есть два доминантных гена, то их продукты взаимодействуют между собой, образуя красный цвет.

При комплиментарном взаимодействии генов при скрещивании гетерозигот (AaBb) возможны разные расщепления по фенотипу (9:6:1, 9:3:3:1, 9:3:4, 9:7).

Эпистаз - это такое взаимодействие неаллельных генов, когда действие одного гена подавляет действие другого. Эпистатичным (подавляющим) действием на другой ген может обладать как доминантный, так и рецессивный аллель данного гена. Расщепление по фенотипу при доминантном эпистазе, отличается от рецессивного. Эпистатичный ген обычно обозначают буквой I.

Примером эпистаза может служить появление цветного оперения во втором поколении при скрещивании белых кур разных пород. У одних генотип IIAA, у других - iiaa. F 1 - IaAa. В F 2 происходит обычное расщепление по генотипу: 9I-A- : 3I-aa: 3iiA- : 1iicc. При этом птицы с генотипом iiA- оказываются окрашенными, что определяет доминантный ген A, который у одного родителя был подавлен доминантным геном-ингибитором I, а у другого присутствовал только в рецессивной форме.

При полимерном взаимодействии неаллельных генов степень выраженности признака (его количество) зависит от количества доминантных аллельных и неаллельных генов. Чем больше генов участвуют в полимерном взаимодействии, тем больше различных степеней выраженности признака. Это происходит при комулятивной полимерии, когда все гены участвуют в накоплении признака. При некомулятивной полимерии количество доминантных генов не влияет на степень выраженности признака, достаточно хотя бы одного; а отличная по фенотипу форма наблюдается только у особей, у которых все полимерные гены рецессивны.

Полимерией, например, определяется цвет кожи человека. Влияние оказывают четыре гена (или четыре пары аллелей по другим источникам). Рассмотрим ситуацию с двумя парами. Тогда A 1 A 1 A 2 A 2 определит самый темный цвет, a 1 a 1 a 2 a 2 - самый светлый. Средний цвет кожи проявится, если два любых гена будут доминантны (A 1 a 1 A 2 a 2 , A 1 A 1 a 2 a 2 , a 1 a 1 A 2 A 2). Наличие одного доминантного гена приведет к цвету кожи близкому к светлому, но темнее, а трех доминантных - близкого к темному, но светлее.

Бывает, что один ген определяет несколько признаков. Такое действие гена называется плейотропией . Понятно, что здесь речь идет не о взаимодействии генов, а с множественным действием одного гена.