Про психологию. Учения и методики

Однородное дифференциальное уравнение 2 го порядка. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛОДУ второго порядка с постоянными коэффициентами

Характеристическое уравнение:

Случай1. Дискриминант больше нуля

Случай2. Дискриминант равен нулю

Случай3. Дискриминант меньше нуля

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами

§ 10. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Определение ЛНДУ второго порядка с постоянными коэффициентами

Метод вариации постоянных

Метод решения ЛНДУ со специальной правой частью

Теорема о структуре общего решения ЛНДУ

1. Функция r (x ) – многочлен степени т

2. Функция r (x ) – произведение числа на показательную функцию

3. Функция r (x ) – сумма тригонометрических функций

Алгоритм нахождения общего решения ЛНДУ со специальной правой частью

Приложение


§ 9. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Дифференциальное уравнение второго порядка называется линейным однородным дифференциальным уравнением (ЛОДУ) с постоянными коэффициентами , если оно имеет вид:

где p и q

Для нахождения общего решения ЛОДУ достаточно найти два его различных частных решения и . Тогда общее решение ЛОДУ будет иметь вид

где С 1 и С

Леонард Эйлер предложил искать частные решения ЛОДУ в виде

где k – некоторое число.

Дифференцируя эту функцию два раза и подставляя выражения для у , у" и у" в уравнение , получим:

Полученное уравнение называется характеристическим уравнением ЛОДУ. Для его составления достаточно в исходном уравнении заменить у" , у" и у соответственно на k 2 , k и 1:

Решив характеристическое уравнение, т.е. найдя корни k 1 и k 2 ,мы найдем и частные решения исходного ЛОДУ.

Характеристическое уравнение есть квадратное уравнение, его корни находятся через дискриминант

При этом возможны следующие три случая .

Случай 1 . Дискриминант больше нуля , следовательно, корни k 1 и k 2 действительные и различные:

k 1 ¹ k 2

где С 1 и С 2 – произвольные независимые постоянные.

Случай 2 . Дискриминант равен нулю , следовательно, корни k 1 и k 2 действительные и равные:

k 1 = k 2 = k

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные.

Случай 3 . Дискриминант меньше нуля . В этом случае уравнение не имеет действительных корней:

Корней нет.

В этом случае общее решение ЛОДУ имеет вид

где С 1 и С 2 – произвольные независимые постоянные,

Таким образом, нахождение общего решения ЛОДУ второго порядка с постоянными коэффициентами сводится к нахождению корней характеристического уравнения и использованию формул общего решения уравнения (не прибегая к вычислению интегралов).

Алгоритм нахождения общего решения ЛОДУ второго порядка с постоянными коэффициентами :

1. Привести уравнение к виду , где p и q – некоторые действительные числа.

2. Составить характеристическое уравнение .

3. Найти дискриминант характеристического уравнения.

4. Используя формулы (см. Таблицу 1), в зависимости от знака дискриминанта записать общее решение.

Таблица 1

Таблица возможных общих решений

Линейное дифференциальное уравнение (ЛДУ) 2-го порядка имеет следующий вид:

где , , и – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a 0 (x) ≠ 0, поделим (2.1) на и, после введения новых обозначений для коэффициентов, запишем уравнение в виде:

Примем без доказательства, что (2.2) имеет на некотором промежутке единственное решение, удовлетворяющее любым начальным условиям , , если на рассматриваемом промежутке функции , и непрерывны. Если , то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций называется выражение , где – произвольные числа.

Теорема. Если и – решение лоду

то их линейная комбинация также будет решением этого уравнения.

Доказательство.

Поставим выражение в (2.3) и покажем, что в результате получается тождество:

Перегруппируем слагаемые:

Поскольку функции и являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при , что если – решение уравнения (2.3), то тоже есть решение этого уравнения.

Следствие 2. Полагая , видим, что сумма двух решений лоду также является решением этого уравнения.

Замечание. Доказанное в теореме свойство решений остается справедливым для лоду любого порядка.

§3. Определитель Вронского.

Определение. Система функций называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций это означает, что , т.е. . Последнее условие можно переписать в виде или . Стоящий в числителе этого выражения определитель называется определителем Вронского для функций и . Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть – определитель Вронского для линейно независимых решений и уравнения (2.3). Убедимся подстановкой, что функция удовлетворяет уравнению . (3.1)

Действительно, . Поскольку функции и удовлетворяют уравнению (2.3), то , т.е. – решение уравнения (3.1). Найдем это решение: ; . Откуда , . , , .

В правой части этой формулы надо взять знак плюс, так как только в этом случае при получается тождество. Таким образом,

(3.2)

Это формула называется формулой Лиувилля. Выше было показано, что определитель Вронского для линейно независимых функций не может быть тождественно равен нулю. Следовательно, существует такая точка , в которой определитель для линейно независимых решений уравнения (2.3) отличен от нуля. Тогда из формулы Лиувилля следует, что функция будет отлична от нуля при всех значениях из рассматриваемого промежутка, поскольку при любом значении оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если и – линейно независимые решения уравнения (2.3), то их линейная комбинация , где и – произвольные постоянные, будет общим решением этого уравнения.

Доказательство.

То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка. Надо только еще показать, что решение будет общим , т.е. надо показать, что при любых начальных условиях , можно выбрать произвольные постоянные и так, чтобы удовлетворить этим условиям. Запишем начальные условия в виде:

Постоянные и из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы есть значение определителя Вронского для линейно независимых решений лоду при :

,

а такой определитель, как мы видели в предыдущем параграфе, отличен от нуля. Теорема доказана.

Пример. Доказать, что функция , где и – произвольные постоянные, является общим решением лоду .

Решение.

Легко убедиться подстановкой, что функции и удовлетворяют данному уравнению. Эти функции являются линейно независимыми, так как . Поэтому согласно теореме о структуре общего решения лоду 2-го порядка является общим решением данного уравнения.

Теорема. Если и – линейно независимые решения уравнения (2.3), то их линейная комбинация , где и – произвольные постоянные, будет общим решением этого уравнения.

Доказательство. То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка. Надо только еще показать, что решение будет общим , т.е. надо показать, что при любых начальных условиях , можно выбрать произвольные постоянные и так, чтобы удовлетворить этим условиям. Запишем начальные условия в виде:

Постоянные и из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы есть значение определителя Вронского для линейно независимых решений лоду при : ,

а такой определитель, как мы видели в предыдущем параграфе, отличен от нуля. Теорема доказана.

Построение общего решения ЛОДУ II-го порядка с постоянными коэффициентами в случае

13. простых корней характеристического уравнения (случай D>0) (c док-вом).

14. кратных корней характеристического уравнения (случай D=0) (c док-вом).

15. комплексно-сопряженных корней характеристического уравнения (случай D<0) (c док-вом).

Дано лоду 2-го порядка с постоянными коэффициентами (5.1), где , . Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер. Это метод, который называется методом Эйлера, состоит в том, что частные решения ищутся в виде .

Подставляя эту функцию в уравнение (5.1), после сокращения на , получим алгебраическое уравнение, которое называется характеристическим: (5.2)

Функция будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2). В зависимости от величины дискриминанта возможны три случая.

1. . Тогда корни характеристического уравнения различны: . Решения и будут линейно независимыми, т.к. и общее решение (5.1) можно записать в виде .

2. . В этом случае и . В качестве второго линейно независимого решения можно взять функцию . Проверим, что эта функция удовлетворяет уравнению (5.1). Действительно, , . Подставляя эти выражения в уравнение (5.1), получим

Или , т.к. и .

Частные решения и линейно независимы, т.к. . Следовательно, общее решение (5.1) имеет вид:

3. . В этом случае корни характеристического уравнения комплексно-сопряженные: , где , . Можно проверить, что линейно независимыми решениями уравнения (5.1) будут функции и . Убедимся, что уравнению (5.1) удовлетворяет, например, функция y 1 . Действительно, , . Подставив эти выражения в уравнение (5.1), получим

Обе скобки в левой части этого равенства тождественно равны нулю. Действительно, ,

Таким образом, функция удовлетворяет уравнению (5.1). Аналогично нетрудно убедиться в том, что и есть решение уравнения (5.1). Поскольку , то общее решение будет иметь вид: .

16. Теорема о структуре общего решения ЛНДУ II-го порядка (с док-вом).

Теорема 1. Общее решение лнду 2-го порядка f(x) (6.1)представляется в виде суммы общего решения соответствующего однородного уравнения (6.2)и любого частного решения лнду (6.1).

Доказательство. Докажем сначала, что будет решением уравнения (6.1). Для этого подставим в уравнение (6.1): f(x). Это равенство является тождеством, т.к. и f(x). Следовательно, есть решение уравнения (6.1).

Докажем теперь, что это решение является общим, т.е. можно так выбрать входящие в него произвольные постоянные, что будут удовлетворяться любые начальные условия вида: , (6.3). Согласно теореме о структуре общего решения линейного однородного дифференциального уравнения (лоду) общее решение уравнения (6.2) можно представить в виде , где и – линейно независимые решения этого уравнения. Таким образом: и, следовательно, начальные условия (6.3) можно записать в виде: или (6.4)

Произвольные постоянные и определяются из этой системы линейных алгебраических уравнений однозначно при любых правых частях, т.к. определитель этой системы = есть значение определителя Вронского для линейно независимых решений уравнения (6.2) при , а такой определитель, как мы видели выше, отличен от нуля. Определив постоянные и из системы уравнений (6.4) и подставив их в выражение , мы получим частное решение уравнения (6.1), удовлетворяющее заданным начальным условиям. Теорема доказана.

17. Построение частного решения ЛНДУ II-го порядка в случае правой части вида

Пусть в уравнении (6.1) коэффициенты постоянны, т.е. уравнение имеет вид: f(x) (7.1) где .

Рассмотрим метод отыскания частного решения уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1. f(x) , где – многочлен степени , причем некоторые коэффициенты, кроме , могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число не является корнем характеристического уравнения для уравнения (5.1), то частное решение записываем в виде: , где – неопределенные коэффициенты, которые подлежат определению методом неопределенных коэффициентов.

б) Если является корнем кратности соответствующего характеристического уравнения, то частное решение ищем в виде: , где – неопределенные коэффициенты.

18. f(x) , где и - многочлены степени и соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

А) Если число не является корнем характеристического уравнения для уравнения (5.1), то вид частного решения будет: , (7.2) где – неопределенные коэффициенты, а .

Б) Если число является корнем характеристического уравнения для уравнения (5.1) кратности , то частное решение лнду будет иметь вид: , (7.3) т.е. частное решение вида (7.2) надо умножить на . В выражении (7.3) - многочлены с неопределенными коэффициентами, причем их степень .

19. Метод вариации для решения ЛНДУ II-го порядка (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

где – линейно независимые на некотором интервале X решения лоду, а - произвольные постоянные. Будем искать частное решение лнду в форме (8.1), считая, что – не постоянные, а некоторые, пока неизвестные, функции от : . (8.2) Продифференцируем равенство (8.2): . (8.3)

Подберем функции и так, чтобы выполнялось равенство: . Тогда вместо (8.3) будем иметь:

Продифференцируем это выражение еще раз по . В результате получим: . (8.5) Подставим (8.2), (8.4), (8.5) в лнду 2-го порядка f(x):

Или f(x). (8.6)

Так как - решения лоду , то последнее равенство (8.6) принимает вид: f(x).

Таким образом, функция (8.2) будет решением лнду в том случае, если функции и удовлетворяют системе уравнений:

(8.7)

Так как определителем этой системы является определитель Вронского для двух линейно независимых на X решений соответствующего лоду, то он не обращается в ноль ни в одной точке интервала X. Следовательно, решая систему (8.7), найдем и : и . Интегрируя, получи , , где – произв. пост.

Возвращаясь в равенство (8.2), получим общее решение неоднородного уравнения: .

Ряды

1. Числовые ряды. Основные понятия, свойства сходящихся рядов. Необходимый признак сходимости (с док-вом).

Основные определения . Пусть дана бесконечная числовая последовательность . Числовым рядом называется составленная из членов этой последовательности запись . Или .Числа называют членами ряда; , называется общим членом ряда. В результате вычисления значений этой функции при n =1, n =2, n =3, … должны получаться члены ряда .

Пусть дан ряд (18.1.1). Составим из его членов конечные суммы, называемые частичными суммами ряда :

Определение. Если существует конечный предел S последовательности частичных сумм ряда (18.1.1) при , то говорят, что ряд сходится; число S называют суммой ряда и пишут или .

Если не существует (в том числе бесконечен), ряд называется расходящимся .

Свойства сходящихся рядов . Необходимый признак сходимости ряда. Общий член сходящегося ряда стремится к нулю при : Доказательство. Если , то и , но , следовательно .

С проверки выполнения условия надо начинать решение любой задачи на исследование сходимости ряда: если это условие не выполняется, то ряд заведомо расходится. Это условие необходимо, но не достаточно для сходимости ряда: общий член гармонического ряда (18.1.2) , однако этот ряд расходится.

Определение. Остатком ряда после n -го члена называется ряд .


В этой статье мы разберем принципы решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами , где p и q – произвольные действительные числа. Сначала остановимся на теории, далее применим полученные результаты в решении примеров и задач.

Если Вам будут встречаться незнакомые термины, то обращайтесь к разделу определения и понятия теории дифференциальных уравнений .


Сформулируем теорему, которая указывает, в каком виде находить общее решение ЛОДУ.

Теорема.

Общее решение линейного однородного дифференциального уравнения с непрерывными на интервале интегрирования X коэффициентами определяется линейной комбинацией , где - линейно независимые частные решения ЛОДУ на X , а - произвольные постоянные.

Таким образом, общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид y 0 =C 1 ⋅y 1 +C 2 ⋅y 2 , где y 1 и y 2 – частные линейно независимые решения, а С 1 и C 2 – произвольные постоянные. Осталось научиться находить частные решения y 1 и y 2 .

Эйлер предложил искать частные решения в виде .

Если принять частным решением ЛОДУ второго порядка с постоянными коэффициентами , то при подстановке этого решения в уравнение мы должны получить тождество:

Так мы получили так называемое характеристическое уравнение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами. Решения k 1 и k 2 этого характеристического уравнения определяют частные решения и нашего ЛОДУ второго порядка с постоянными коэффициентами.


В зависимости от коэффициентов p и q корни характеристического уравнения могут быть:

В первом случае линейно независимыми частными решениями исходного дифференциального уравнения являются и , общее решение ЛОДУ второго порядка с постоянными коэффициентами есть .

Функции и действительно линейно независимы, так как определитель Вронского отличен от нуля для любых действительных x при .

Во втором случае одним частным решением является функция . В качестве второго частного решения берется . Покажем, что действительно является частным решением ЛОДУ второго порядка с постоянными коэффициентами и докажем линейную независимость y 1 и y 2 .

Так как k 1 = k 0 и k 2 = k 0 совпадающие корни характеристического уравнения, то оно имеет вид . Следовательно, - исходное линейное однородное дифференциальное уравнение. Подставим в него и убедимся, что уравнение обращается в тождество:

Таким образом, является частным решением исходного уравнения.

Покажем линейную независимость функций и . Для этого вычислим определитель Вронского и убедимся, что он отличен от нуля.

Вывод: линейно независимыми частными решениями ЛОДУ второго порядка с постоянными коэффициентами являются и , и общее решение есть при .

В третьем случае имеем пару комплексных частных решений ЛОДУ и . Общее решение запишется как . Эти частные решения могут быть заменены двумя действительными функциями и , соответствующими действительной и мнимой частям. Это хорошо видно, если преобразовать общее решение , воспользовавшись формулами из теории функции комплексного переменного вида :


где С 3 и С 4 – произвольные постоянные.

Итак, обобщим теорию.

Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

Рассмотрим примеры для каждого случая.

Пример.

Найдите общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид