Про психологию. Учения и методики

Вектор количества движения механической системы. Теоремы об изменении количества движения точки и системы

Состоящую из n материальных точек. Выделим из этой системы некоторую точку M j с массой m j . На эту точку, как известно, действуют внешние и внутренние силы .

Приложим к точке M j равнодействующую всех внутренних сил F j i и равнодействующую всех внешних сил F j e (рисунок 2.2). Для выделенной материальной точки M j (как для свободной точки) запишем теорему об изменении количества движения в дифференциальной форме (2.3):

Запишем аналогичные уравнения для всех точек механической системы (j=1,2,3,…,n) .

Рисунок 2.2

Сложим почленно все n уравнений:

∑d(m j ×V j)/dt = ∑F j e + ∑F j i , (2.9)

d∑(m j ×V j)/dt = ∑F j e + ∑F j i . (2.10)

Здесь ∑m j ×V j =Q – количество движения механической системы;
∑F j e = R e – главный вектор всех внешних сил, действующих на механическую систему;
∑F j i = R i =0 – главный вектор внутренних сил системы (по свойству внутренних сил он равен нулю).

Окончательно для механической системы получаем

dQ/dt = R e . (2.11)

Выражение (2.11) представляет собой теорему об изменении количества движения механической системы в дифференциальной форме (в векторном выражении): производная по времени от вектора количества движения механической системы равна главному вектору всех внешних сил, действующих на систему .

Проецируя векторное равенство (2.11) на декартовы оси координат, получаем выражения для теоремы об изменении количества движения механической системы в координатном (скалярном) выражении:

dQ x /dt = R x e ;

dQ y /dt = R y e ;

dQ z /dt = R z e , (2.12)

т.е. производная по времени от проекции количества движения механической системы на какую-либо ось равна проекции на эту ось главного вектора всех действующих на эту механическую систему внешних сил .

Умножая обе части равенства (2.12) на dt , получим теорему в другой дифференциальной форме:

dQ = R e ×dt = δS e , (2.13)

т.е. дифференциал количества движения механической системы равен элементарному импульсу главного вектора (сумме элементарных импульсов) всех внешних сил, действующих на систему .

Интегрируя равенство (2.13) в пределах изменения времени от 0 до t , получаем теорему об изменении количества движения механической системы в конечной (интегральной) форме (в векторном выражении):

Q — Q 0 = S e ,

т.е. изменение количества движения механической системы за конечный промежуток времени равно полному импульсу главного вектора (сумме полных импульсов) всех внешних сил, действующих на систему за тот же промежуток времени .

Проецируя векторное равенство (2.14) на декартовы оси координат, получим выражения для теоремы в проекциях (в скалярном выражении):

т.е. изменение проекции количества движения механической системы на какую-либо ось за конечный промежуток времени равно проекции на эту же ось полного импульса главного вектора (сумме полных импульсов) всех действующих на механическую систему внешних сил за тот же промежуток времени .

Из рассмотренной теоремы (2.11) – (2.15) вытекают следствия:

  1. Если R e = ∑F j e = 0 , то Q = const – имеем закон сохранения вектора количества движения механической системы: если главный вектор R e всех внешних сил, действующих на механическую систему, равен нулю, то вектор количества движения этой системы остается постоянным по величине и направлению и равным своему начальному значению Q 0 , т.е. Q = Q 0 .
  2. Если R x e = ∑X j e =0 (R e ≠ 0) , то Q x = const – имеем закон сохранения проекции на ось количества движения механической системы: если проекция главного вектора всех действующих на механическую систему сил на какую-либо ось равна нулю, то проекция на эту же ось вектора количества движения этой системы будет величиной постоянной и равной проекции на эту ось начального вектора количества движения, т.е. Q x = Q 0x .

Дифференциальная форма теоремы об изменении количества движения материальной системы имеет важные и интересные приложения в механике сплошной среды. Из (2.11) можно получить теорему Эйлера.

Количеством движения материальной точки называется векторная величина mV, равная произведению массы точки на вектор ее скорости. Вектор mV приложен к движущейся точке.

Количеством движения системы называют векторную величину Q , равную геометрической сумме (главному вектору) количеств движения всех точек системы:

Вектор Q является свободным вектором. В системе единиц СИ модуль количества движения измеряется в кг м/с или Н с.

Как правило, скорости всех точек системы различны (см., например, распределение скоростей точек катящегося колеса, показанное на рис. 6.21), и поэтому непосредственное суммирование векторов в правой части равенства (17.2) является затруднительным. Найдем формулу, с помощью которой величина Q вычисляется значительно легче. Из равенства (16.4) следует, что

Взяв от обеих частей производную по времени, получим Отсюда, учитывая равенство (17.2), находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Заметим, что вектор Q, подобно главному вектору сил в статике, является некоторой обобщенной векторной характеристикой движения всей механической системы. В общем случае движения системы ее количество движения Q можно рассматривать как характеристику поступательной части движения системы вместе с ее центром масс. Если при движении системы (тела) центр масс неподвижен, то количество движения системы будет равно нулю. Таково, например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс.

Пример. Определить количество движения механической системы (рис. 17.1, а), состоящей из груза А массой т А - 2 кг, однородного блока В массой 1 кг и колеса D массой m D - 4 кг. Груз А движется со скоростью V A - 2 м/с, колесо D катится без скольжения, нить нерастяжима и невесома. Решение. Количество движения системы тел

Тело А движется поступательно и Q A =m A V A (численно Q A = 4 кг м/с, направление вектора Q A совпадает с направлением V A). Блок В совершает вращательное движение вокруг неподвижной оси, проходящей через его центр масс; следовательно, Q B - 0. Колесо D совершает плоскопараллельное


движение; его мгновенный центр скоростей находится в точке К , поэтому скорость его центра масс (точки Е) равна V E = V A /2= 1 м/с. Количество движения колеса Q D - m D V E - 4 кг м/с; вектор Q D направлен горизонтально влево.

Изобразив векторы Q A и Q D на рис. 17.1, б , находим количество движения Q системы по формуле (а). Учитывая направления и числовые значения величин, получим Q ~^Q A +Q E =4л/2~ кг м/с, направление вектора Q показано на рис. 17.1, б.

Учитывая, что a -dV/dt, уравнение (13.4) основного закона динамики можно представить в виде

Уравнение (17.4) выражает теорему об изменении количества движения точки в дифференциальной форме: в каждый момент времени производная по времени от количества движения точки равна действующей на точку силе. (По существу это другая формулировка основного закона динамики, близкая к той, которую дал Ньютон.) Если на точку действует несколько сил, то в правой части равенства (17.4) будет равнодействующая сил, приложенных к материальной точке.

Если обе части равенства умножить на dt, то получим

Векторная величина, стоящая в правой части этого равенства, характеризует действие, оказываемое на тело силой за элементарный промежуток времени dt эту величину обозначают dS и называют элементарным импульсом силы, т. е.

Импульс S силы F за конечный промежуток времени /, - / 0 определяется как предел интегральной суммы соответствующих элементарных импульсов, т. е.


В частном случае, если сила F постоянна по модулю и по направлению, то S = F(t | -/ 0) и S- F(t l - / 0). В общем случае модуль импульса силы может быть вычислен по его проекциям на координатные оси:


Теперь, интегрируя обе части равенства (17.5) при т = const, получим

Уравнение (17.9) выражает теорему об изменении количества движения точки в конечной (интегральной) форме: изменение количества движения точки за некоторый промежуток времени равно импульсу действующей на точку силы (или импульсу равнодействующей всех приложенных к ней сил) за тот же промежуток времени.

При решении задач пользуются уравнениями этой теоремы в проекциях на координатные оси


Теперь рассмотрим механическую систему, состоящую из п материальных точек. Тогда для каждой точки можно применить теорему об изменении количества движения в форме (17.4), учитывая приложенные к точкам внешние и внутренние силы:

Суммируя эти равенства и учитывая, что сумма производных равна производной от суммы, получаем

Так как по свойству внутренних сил HF k =0 и по определению количества движения ^fn k V/ c = Q , то окончательно находим


Уравнение (17.11) выражает теорему об изменении количества движения системы в дифференциальной форме: в каждый момент времени производная по времени от количества движения системы равна геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.11) на координатные оси, получим

Умножая обе части (17.11) на dt и интегрируя, получим

где 0, Q 0 - количества движения системы в моменты времени соответственно и / 0 .

Уравнение (17.13) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за какое-либо время равно сумме импульсов всех внешних сил, действующих на систему за то же время.

В проекциях на координатные оси получим

Из теоремы об изменении количества движения системы можно получить следующие важные следствия, которые выражают закон сохранения количества движения системы.

  • 1. Если геометрическая ^умма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.11) следует, что при этом Q = const, т. е. вектор количества движения системы будет постоянен по модулю и направлению.
  • 2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-либо ось равна нулю (например, I e kx = 0), то из уравнений (17.12) следует, что при этом Q x = const, т. е. проекция количества движения системы на эту ось остается неизменной.

Отметим, что внутренние силы системы не участвуют в уравнении теоремы об изменении количества движения системы. Эти силы, хотя и влияют на количество движения отдельных точек системы, не могут изменить количество движения системы в целом. Учитывая это обстоятельство, при решении задач рассматриваемую систему целесообразно выбирать так, чтобы неизвестные силы (все или их часть) сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению скорости одной части системы надо определить скорость другой ее части.

Задача 17.1. К тележке массой т х - 12 кг, движущейся по гладкой горизонтальной плоскости, в точке А с помощью цилиндрического шарнира прикреплен невесомый стержень AD длиной /= 0,6 м с грузом D массой т 2 - 6 кг на конце (рис. 17.2). В момент времени / 0 = 0, когда скорость тележки и {) - 0,5 м/с, стержень AD начинает вращаться вокруг оси А, перпендикулярной плоскости чертежа, по закону ф = (тг/6)(3^ 2 - 1) рад (/-в секундах). Определить: u=f.

§ 17.3. Теорема о движении центра масс

Теорему об изменении количества движения механической системы можно выразить еще в другой форме, носящей название теоремы о движении центра масс.

Подставив в уравнение (17.11) равенство Q =MV C , получим

Если масса М системы постоянна, то получим

где а с - ускорение центра масс системы.

Уравнение (17.15) и выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Проецируя равенство (17.15) на координатные оси, получим

где x c , y c , z c - координаты центра масс системы.

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Обсудим полученные результаты. Предварительно напомним, что центр масс системы является геометрической точкой, расположенной подчас вне геометрических границ тела. Действующие же на механическую систему силы (внешние и внутренние) приложены ко всем материальным точкам системы. Уравнения (17.15) дают возможность определить движение центра масс системы, не определяя движения отдельных ее точек. Сопоставив уравнения (17.15) теоремы о движении центра масс и уравнения (13.5) второго закона Ньютона для материальной точки, приходим к заключению: центр масс механической системы движется как материальная точка, масса которой равна массе всей системы, и как будто бы к этой точке приложены все внешние силы, действующие на систему. Таким образом, решения, которые получаем, рассматривая данное тело как материальную точку, определяют закон движения центра масс этого тела.

В частности, если тело движется поступательно, то кинематические характеристики всех точек тела и его центра масс одинаковы. Поэтому поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе всего тела.

Как видно из (17.15), внутренние силы, действующие на точки системы, не оказывают влияния на движение центра масс системы. Внутренние силы могут оказать влияние на движение центра масс в тех случаях, когда под их воздействием меняются внешние силы. Примеры этого будут приведены далее.

Из теоремы о движении центра масс можно получить следующие важные следствия, которые выражают закон сохранения движения центра масс системы.

1. Если геометрическая сумма всех внешних сил, действующих на систему, равна нулю (LF k =0), то из уравнения (17.15) следует,

что при этом а с = 0 или V c = const, т. е. центр масс этой системы

движется с постоянной по модулю и направлению скоростью (иначе, равномерно и прямолинейно). В частном случае, если вначале центр масс был в покое (V c =0), то он и останется в покое; откуда

следует, что его положение в пространстве не изменится, т. е. r c = const.

2. Если внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ось х) равна нулю (?F e kx = 0), то из уравнения (17.16) следует, что при этом х с =0 или V Cx =х с = const, т. е. проекция скорости центра масс системы на эту ось есть величина постоянная. В частном случае, если в начальный момент Vex = 0, то и в любой последующий момент времени это значение сохранится, а отсюда следует, что координата х с центра масс системы не изменится, т. е. х с - const.

Рассмотрим примеры, иллюстрирующие закон движения центра масс.

Примеры. 1. Как было отмечено, движение центра масс зависит только от внешних сил, внутренними силами изменить положение центра масс нельзя. Но внутренние силы системы могут вызвать внешние воздействия. Так, движение человека по горизонтальной поверхности происходит под действием сил трения между подошвами его обуви и поверхностью дороги. Силой своих мышц (внутренние силы) человек ногами отталкивается от поверхности дороги, отчего в точках контакта с дорогой возникает сила трения (внешняя для человека), направленная в сторону его движения.

  • 2. Аналогичным образом двигается автомобиль. Внутренние силы давления в его двигателе заставляют вращаться колеса, но так как последние имеют сцепление с дорогой, то возникающие силы трения «толкают» машину вперед (в результате колеса не вращаются, а двигаются плоскопараллельно). Если же дорога будет абсолютно гладкой, то центр масс автомобиля будет неподвижен (при нулевой начальной скорости) и колеса при отсутствии трения будут пробуксовывать, т. е. совершать вращательное движение.
  • 3. Движение с помощью гребного винта, пропеллера, весел происходит за счет отбрасывания некоторой массы воздуха (или воды). Если рассматривать отбрасываемую массу и движущееся тело как одну систему, то силы взаимодействия между ними, как внутренние, не могут изменить суммарное количество движения этой системы. Однако каждая из частей этой системы будет двигаться, например, лодка вперед, а вода, которую отбрасывают весла, - назад.
  • 4. В безвоздушном пространстве при движении ракеты «отбрасываемую массу» следует «брать с собой»: реактивный двигатель сообщает движение ракете за счет отброса назад продуктов горения топлива, которым заправлена ракета.
  • 5. При спуске на парашюте можно управлять движением центра масс системы человек - парашют. Если мышечными усилиями человек подтягивает стропы парашюта так, что меняется форма его купола либо угол атаки воздушного потока, то это вызовет изменение и внешнего воздействия воздушного потока, а тем самым оказывается влияние на движение всей системы.

Задача 17.2. В задаче 17.1 (см. рис. 17.2) определить: 1) закон движения тележки х { = /)(/), если известно, что в начальный момент времени t 0 = О система находилась в покое и координата х 10 = 0; 2) ^акон изменения со временем суммарного значения нормальной реакции N(N = N" + N") горизонтальной плоскости, т. е. N=f 2 (t).

Решение. Здесь, как и в задаче 17.1, рассмотрим систему, состоящую из тележки и груза D, в произвольном положении под действием приложенных к ней внешних сил (см. рис. 17.2). Координатные оси Оху проведем так, чтобы ось х была горизонтальна, а ось у проходила через точку А 0 , т. е. место расположения точки А в момент времени t-t 0 - 0.

1. Определение закона движения тележки. Для определения х, = /,(0 воспользуемся теоремой о движении центра масс системы. Составим дифференциальное уравнение его движения в проекции на ось х:

Так как все внешние силы вертикальны, то T,F e kx = 0, и, следовательно,

Проинтегрировав это уравнение, найдем, что Мх с = В, т. е. проекция скорости центра масс системы на ось х есть величина постоянная. Так как в начальный момент времени

Интегрируя уравнение Мх с = 0, получим

т. е. координата х с центра масс системы постоянна.

Запишем выражение Мх с для произвольного положения системы (см. рис. 17.2), приняв во внимание, что х А - х { , x D - х 2 и х 2 - х { - I sin ф. В соответствии с формулой (16.5), определяющей координату центра масс системы, в данном случае Мх с - т { х { + т 2 х 2 ".

для произвольного момента времени

для момента времени / () = 0, х { = 0 и

В соответствии с равенством (б) координата х с центра масс всей системы остается неизменной, т. е. хД^,) = x c (t). Следовательно, приравняв выражения (в) и (г), получим зависимость координаты х, от времени.

О т в е т: Х - 0,2 м, где t - в секундах.

2. Определение реакции N. Для определения N=f 2 (t ) составим дифференциальное уравнение движения центра масс системы в проекции на вертикальную ось у (см. рис. 17.2):

Отсюда, обозначив N= N + N", получим

По формуле, определяющей ординату у с центра масс системы, Му с = т { у х + т 2 у 2 , где у, = у С1 , у 2 = y D = У а ~ 1 cos Ф» получим

Продифференцировав это равенство два раза по времени (учитывая при этом, что у С1 и у А величины постоянные и, следовательно, их производные равны нулю), найдем


Подставив это выражение в уравнение (е), определим искомую зависимость N от t.

Ответ: N- 176,4 + 1,13,

где ф = (я/6)(3/ -1), t - в секундах, N- в ньютонах.

Задача 17.3. Электрический мотор массой т х прикреплен на горизонтальной поверхности фундамента болтами (рис. 17.3). На валу мотора под прямым углом к оси вращения закреплен одним концом невесомый стержень длиной /, на другом конце стержня насажен точечный груз А массой т 2 . Вал вращается равномерно с угловой скоростью со. Найти горизонтальное давление мотора на болты. Решение. Рассмотрим механическую систему, состоящую из мотора и точечного груза А, в произвольном положении. Изобразим действующие на систему внешние силы: силы тяжести Р х, Р 2 , реакцию фундамента в виде вертикальной силы N и горизонтальной силы R. Проведем координатную ось х горизонтально.

Чтобы определить горизонтальное давление мотора на болты (а оно будет численно равно реакции R и направлено противоположно вектору R ), составим уравнение теоремы об изменении количества движения системы в проекции на горизонтальную ось х:

Для рассматриваемой системы в ее произвольном положении, учитывая, что количество движения корпуса мотора равно нулю, получим Q x = - т 2 У А сощ. Принимая во внимание, что V A = a з/, ф = со/ (вращение мотора равномерное), получим Q x - - m 2 co/cos со/. Дифференцируя Q x по времени и подставляя в равенство (а), найдем R- m 2 co 2 /sin со/.

Заметим, что именно такие силы являются вынуждающими (см. § 14.3), при их воздействии возникают вынужденные колебания конструкций.

Упражнения для самостоятельной работы

  • 1. Что называют количеством движения точки и механической системы?
  • 2. Как изменяется количество движения точки, равномерно движущейся по окружности?
  • 3. Что характеризует импульс силы?
  • 4. Влияют ли внутренние силы системы на ее количество движения? На движение ее центра масс?
  • 5. Как влияют на движение центра масс системы приложенные к ней пары сил?
  • 6. При каких условиях центр масс системы находится в покое? движется равномерно и прямолинейно?

7. В неподвижной лодке при отсутствии течения воды на корме сидит взрослый человек, а на носу лодки - ребенок. В каком направлении переместится лодка, если они поменяются местами?

В каком случае модуль перемещения лодки будет большим: 1) если ребенок перейдет к взрослому на корму; 2) если взрослый перейдет к ребенку на нос лодки? Каковы будут при этих движениях перемещения центра масс системы «лодка и два человека»?

Количество движения

мера механического движения, равная для материальной точки произведению её массы m на скорость v. К. л. mv - величина векторная, направленная так же, как скорость точки. Иногда К. д. называют ещё импульсом. При действии силы К. д. точки изменяется в общем случае и численно и по направлению; это изменение определяется вторым (основным) законом динамики (см. Ньютона законы механики).

К. д. Q механической системы равно геометрической сумме К. д. всех её точек или произведению массы М всей системы на скорость v c её центра масс: Q = ∑m k v k =Mv с. Изменение К. д. системы происходит под действием только внешних сил, то есть сил, действующих на систему со стороны тел, в эту систему не входящих. Согласно теореме об изменении К. д. Q 1 -Q 0 = ∑S k e . где Q 0 и Q 1 - К. д. системы в начале и в конце некоторого промежутка времени, S k e - импульсы внешних сил F k e (см. Импульс силы) за этот промежуток времени (в дифференциальной форме теорема выражается уравнением Динамика), в частности в теории Удар а.

Для замкнутой системы, т. е. системы, не испытывающей внешних воздействий, или в случае, когда геометрическая сумма действующих на систему внешних сил равна нулю, имеет место закон сохранения К. д. При этом К. д. отдельных частей системы (например, под действием внутренних сил) могут изменяться, но так, что величина Q = ∑m к v k остаётся постоянной. Этот закон объясняет такие явления, как реактивное движение, отдачу (или откат) при выстреле, работу гребного винта или вёсел и др. Например, если рассматривать ружье и пулю как одну систему, то давление пороховых газов при выстреле будет для этой системы силой внутренней и не может изменить К. д. системы, равное до выстрела нулю. Поэтому, сообщая пуле К. д. m 1 v 1 , направленное к дульному срезу, пороховые газы сообщат одновременно ружью численно такое же, но противоположно направленное К. д. m 2 v 2 , что вызовет отдачу; из равенства m 1 v 1 = m 2 v 2 (где v 1 , v 2 - численные значения скоростей) можно, зная скорость v 1 ; пули при вылете из ствола, найти наибольшую скорость v 2 отдачи (а для орудия - отката).

При скоростях, близких к скорости света с, К. д., или импульс, свободной частицы определяется формулой р = mv/ β=v/c; когда vc, эта формула переходит в обычную: р = mv (см. Относительности теория).

К. д. обладают и Поля физические (электромагнитные, гравитационные и др.). К. д. поля характеризуются плотностью К. д. (отношением К. д. элементарного объёма к этому объёму) и выражается через напряжённость поля или его потенциал и т.д.

С. М. Тарг.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Количество движения" в других словарях:

    Мера механического движения, равная для материальной точки произведению ее массы m на скорость v. Количество движения mv величина векторная, направленная так же, как скорость точки. Количество движения называется также импульсом … Большой Энциклопедический словарь

    - (импульс), мера механич. движения, равная для материальной точки произведению её массы т на скорость v. К. д. mv величина векторная, направленная так же, как скорость точки. Под действием силы К. д. точки изменяется в общем случае и численно, и… … Физическая энциклопедия

    См. Импульс. Философский энциклопедический словарь. 2010 … Философская энциклопедия

    количество движения - импульс — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы импульс EN momentumlinear momentum … Справочник технического переводчика

    Мера механического движения, равная для материальной точки произведению её массы m на скорость v. Количество движения mv величина векторная, совпадающая по направлению с вектором скорости v. Количество движения называется также импульсом. * * *… … Энциклопедический словарь

    Импульс (количество движения) аддитивный интеграл движения механической системы; соответствующий закон сохранения связан с фундаментальной симметрией однородностью пространства. Содержание 1 История появления термина 2 «Школьное» определение… … Википедия

    количество движения - judesio kiekis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas kūno masės ir jo judėjimo greičio sandauga. atitikmenys: angl. kinetic moment; kinetic momentum; linear momentum; quantity of motion vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    количество движения - judesio kiekis statusas T sritis fizika atitikmenys: angl. kinetic momentum; momentum; quantity of motion vok. Bewegungsgröße, f; Impuls, m rus. импульс, m; количество движения, n pranc. impulsion, f; quantité de mouvement, f … Fizikos terminų žodynas

    Количество движения - то же, что импульс мера механического движения, равная произведению массы тела т на его скорость v. Вектор количества движения совпадает по направлению с вектором скорости … Начала современного естествознания

    Мера механич. движения, равная для материальной точки произведению её массы от на скорость v. К. д. mv величина векторная, совпадающая по направлению с вектором скорости v. К. д. наз. также импульсом … Естествознание. Энциклопедический словарь

Книги

  • Настольная игра "Правила дорожного движения" (8741) , Будишевский Николай. Безопасность дорожного движения обеспечивается каждым пешеходом и водителем. С самого раннего детства надо изучить Правила Дорожного Движения и тщательно соблюдать их. Наша игра познакомит…
  • 4. Дифференциальные уравнения относительного движения материальной точки. Переносная и кориолисова сила инерции.
  • 5. Принцип относительности
  • 6. Свободные колебания материальной точки без учета сопротивления
  • 7. Затухающие колебания материальной точки.
  • 8. Вынужденные колебания
  • 9.Момент инерции тела относительно оси.Радиус инерции тела.
  • 11(12).Моменты инерции простых тел относительно главных центральных осей:однородного тонкого стержня,сплошного круглого цилиндра.
  • 12.Диф.Уравнения движения механической системы.
  • 13.Теорема о движении центра масс механической системы.
  • 14. Количество движения материальной точки и механической системы.
  • 15. Элементарный импульс силы и импульс силы за конечный промежуток времени.
  • 16. Теоремы об изменении количества движения материальной точки в дифференциальной и в конечной формах.
  • 17. Теорема об изменении количества движения механической системы. Закон сохранения количества движения.
  • 18. Момент количества движения материальной точки относительно центра и относительно оси.
  • 19. Кинетический момент механической системы относительно центра и относительно оси. Кинетический момент твердого тела относительно оси вращения.
  • 21(22) Диференциальные Уравнения движения твердого тела(поступательного, вращательного и плоскопараллельного движения твердого тела).
  • 33. Физический и математический маятники. Период колебаний. Определение осевых моментов инерции тел.
  • 37. Определение главного вектора и главного момента сил инерции механической системы.
  • 33(36). Главный вектор сил инерции поступательно движущегося тела.
  • 38). Главный вектор и главный момент сил инерции вращающегося тела в двух случаях: ось вращения проходит через центр масс тела и не проходит.
  • 45.Обобщеные силы их вычисление,размерности обобщеных сил
  • 46. Обобщеные силы имеющие потенциал.
  • 47.Условия равновесия системы в обобщеных координатах
  • 39.(49) Уравнение Лагранжа второго рода в случае потенциальных сил. Функция Лагранжа (кинетический потенциал).
  • 40.Явление удара.Ударная сила и ударный импульс.Действие ударной силы на материальную точку.
  • 41.Теорема об изменении кол-ва движения мех.Сис. При ударе.
  • 42.Прямой центральный удар тела о неподвижную поверхность;упругий и неупругий удары.Коэфицент
  • 14. Количество движения материальной точки и механической системы.

    Кол-вом дв-ия мат/точки наз-ся векторная величина , равная произведению массы на ее скорость (направлен как и ск-ть по касательной).

    Кол-вом дв-ия с-мы будем наз-ть векторную величину , равную геометрической сумме (главному вектору) кол-в дв-ия всех точек с-мы:

    Кол-во дв-ия с-мы равно произведению массы всей с-мы на скорость ее центра масс:

    15. Элементарный импульс силы и импульс силы за конечный промежуток времени.

    Элем-ым имп-ом силы наз-ся векторная величина , равная произведению силына элем-ный промежуток времениdt: (направлен вдоль линии действия силы)

    Импульс силы за некоторый промежуток времени t 1 равен определенному интегралу от элем-ого импульса, взятому в пределах от 0

    16. Теоремы об изменении количества движения материальной точки в дифференциальной и в конечной формах.

    Т-ма об изм-ии кол-ва дв-ия мат/точки в дифф/форме: производная по времени от кол-ва дв-ия точки равна сумме действующих на точку сил:

    При t=0 ск-ть , приt 1 ск-ть

    Т-ма об изм-ии кол-ва дв-ия мат/точки (в кон/виде): изм-ие кол-ва

    дв-ия точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

    17. Теорема об изменении количества движения механической системы. Закон сохранения количества движения.

    Т-ма об изм-ии кол-ва дв-ия с-мы в дифф/форме: производная по времени от кол-ва дв-ия с-мы равна геом-ой сумме всех действующих на

    с-му внешних сил. На

    При t=0 кол-во дв-ия , приt 1 кол/дв :

    Т-ма об изм-ии кол-ва дв-ия с-мы в интегр-ой форме: изменение кол/дв с-мы за некоторый промежуток времени равно сумме импульсов, действующих на с-му внешних сил за тот же промежуток времени.

    З-он сох-ия кол-ва дв-ия:

    1) Пусть , тогда=const. Если сумма внешних сил, действующих на с-му, равна 0, то вектор кол/движ с-мы будет постоянен по модулю и направлению.

    2) Пусть , тогда=const. Если сумма проекций всех действующих внешних сил на какую-нибудь ось равна 0, то проекция кол/движ с-мы на эту ось есть величина постоянная.

    18. Момент количества движения материальной точки относительно центра и относительно оси.

    Момент кол/дв точки отн-но некоторого центра О наз-ся векторная величина , определяемая равенством(направлен перпен-но

    плос-ти, проходящей через и центр О)

    Момент кол/дв точки относ-но оси Oz, проходящий через центр О :

    19. Кинетический момент механической системы относительно центра и относительно оси. Кинетический момент твердого тела относительно оси вращения.

    Главным моментом кол-ств дв-ия (или кин-им моментом) с-мы отн-но данного центра О наз-ся величина , равная геом-ой сумме моментов кол-ств дв-ия всех точек с-мы отн-но этого центра:

    Проекция на оси :

    У любой точки тела, отстоящей от оси вращения ск-ть , следовательно:

    Кин-ий момент вращения тела отн-но оси вращения равен произведению момента инерции тела отн-но этой оси

    на угловую скорость тела:

    20. кол-вом дв.мат.точки - вектор m υ размерность [кг*м\с]=[Н*с]

    Теорема: дифференциал по времени от кол-ва дв.мат.точки равна геометрич.сумме действующей на не сил.

    Домножим на dt , : d(mυ). Полный импульс S =домножим на dt получим интегральную конечную форму записи теоремы: m . –Изменение кол-ва дв.мат.точки за некоторый промежуток времени равно геометр.сумме импульсов сил,действующих на точку за тот же промежуток времени. Аналит.форма записи: m m m

    (21). Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента.

    Т-ма моментов для с-мы: производная по времени от главного момента кол-ств дв-ия с-мы отн-но некоторого неподвижного центра равна сумме моментво всех внешних сил с-мы отн-но того же центра. Проекция на оси:

    Закон сохранения кин-ого момента:

    "

    Просмотр: эта статья прочитана 23264 раз

    Pdf Выберите язык... Русский Украинский Английский

    Краткий обзор

    Полностью материал скачивается выше, предварительно выбрав язык


    Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
    Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
    Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
    Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
    Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
    Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
    Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
    Выводы:

    1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
    2. Внутренние силы не учитываются теоремой о движении центра масс.
    3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

    Закон о сохранении движения центра масс системы:
    1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
    2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

    Теорема об изменении количества движения.

    Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
    Единицей измерения количества движения есть (кг м/с).
    Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
    Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
    Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
    Импульс силы характеризует действие силы за некоторый промежуток времени.
    Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
    Теорема об изменении количества движения материальной точки :
    (в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
    (в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

    Теорема об изменении количества движения механической системы
    (в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
    (в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
    Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
    Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
    Закон сохранения количества движения системы.

    1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
    2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

    Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

    1. Классификация сил, действующих на механическую систему
    2. Свойства внутренних сил
    3. Масса системы. Центр масс
    4. Дифференциальные уравнения движения механической системы
    5. Теорема о движении центра масс механической системы
    6. Закон о сохранении движения центра масс системы
    7. Теорема об изменении количества движения
    8. Закон сохранения количества движения системы

    Язык: русский, украинский

    Размер: 248К

    Пример расчета прямозубой цилиндрической передачи
    Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


    Пример решения задачи на изгиб балки
    В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


    Пример решения задачи на кручение вала
    Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


    Пример решения задачи на растяжение-сжатие стержня
    Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


    Применение теоремы о сохранении кинетической энергии
    Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



    Определение скорости и ускорения точки по заданным уравнениям движения
    Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


    Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
    Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении