Про психологию. Учения и методики

Сила гравитационного притяжения. Гравитационные силы

Гравитационная сила – фундамент на котором держится Вселенная. Благодаря силе тяжести Солнце не взрывается, атмосфера не улетучивается в космос, люди и животные свободно передвигаются по поверхности, а растения дают плоды.

Небесная механика и теория относительности

Закон всемирного тяготения изучают в 8-9 классе средней школы. Прилежные ученики знают о знаменитом яблоке упавшем на голову великого Исаака Ньютона и об открытиях, которые за этим последовали. На самом деле, дать четкое определение гравитации гораздо сложнее. Современные ученые продолжают дискуссии на тему, как взаимодействуют тела в открытом космосе и существует ли антигравитация. Изучить данное явление в земных лабораториях крайне сложно, поэтому выделяют несколько базовых теорий гравитации:

Ньютоновская гравитация

В 1687 г. Ньютон заложил основы небесной механики, которая изучает движение тел в пустом пространстве. Он рассчитал силу притяжения Луны к Земле. Согласно формуле, эта сила напрямую зависит от их массы и расстояния между объектами.

F = (G m1 m2)/r2
Гравитационная постоянная G=6.67*10-11

Уравнение не совсем актуально, когда анализируется сильное гравитационное поле или притяжение более двух объектов.

Теория гравитации Эйнштейна

В ходе различных экспериментов ученые пришли к выводу, что в формуле Ньютона есть некоторые погрешности. Основой небесной механики является дальнодействующая сила, срабатывающая моментально в независимости от расстояния, что не соответствует теории относительности.

Согласно разработанной в начале 20 века теории А.Эйнштейна информация не распространяется быстрее скорости света в вакууме, поэтому гравитационные эффекты возникают в результате деформации пространства-времени. Чем больше масса объекта, тем больше искривление в которое скатываются более легкие объекты.

Квантовая гравитация

Очень противоречивая и не до конца сформированная теория, которая объясняет взаимодействие тел, как обмен особыми частицами – гравитонами.

В начале 21 века ученым удалось провести несколько значимых экспериментов, в том числе с помощью адронного коллайдера, и разработать теорию петлевой квантовой гравитации и теорию струн.

Вселенная без гравитации

В фантастических романах часто описываются различные гравитационные искажения, антигравитационные камеры и космические корабли с искусственным гравитационным полем. Читатели иногда даже не задумаются насколько нереальны сюжеты книг и что будет, если сила тяжести уменьшится/увеличится или совершенно исчезнет.

  1. Человек адаптирован к земной гравитации, поэтому в других условиях ему придется кардинально измениться. Невесомость приводит к атрофии мышц, сокращению числа эритроцитов и нарушению в работе всех жизненно важных систем организма, а при увеличении гравитационного поля люди просто не смогут сдвинуться с места.
  2. Воздух и вода, растения и животные, дома и машины улетят в открытый космос. Даже если людям удастся остаться они быстро погибнут без кислорода и еды. Низкая гравитация на Луне – это основная причина отсутствия не ней атмосферы, соответственно и жизни.
  3. Наша планета развалится на части, поскольку исчезнет давление в самом центре Земли, начнется извержение всех существующих вулканов и расхождение тектонических плит.
  4. Звезды взорвутся из-за сильного давления и хаотичного столкновения частиц в ядре.
  5. Вселенная превратится в бесформенное рагу из атомов и молекул, которые неспособны соединиться для создания чего-то большего.


К счастью для человечества, отключение гравитации и страшные события, которые за этим последую никогда не произойдут. Темный сценарий просто демонстрирует насколько важна гравитация. Она значительно слабее чем электромагнетизм , сильное или слабое взаимодействия, но фактически без неё наш мир перестанет существовать.

    Сначала представим Землю как не-подвижный шар (рис. 3.1, а). Сила тяготения F между Землей (масса М) и объектом (масса m) определяет-ся формулой: F= G Mm/r 2

    где r — радиус Земли. Константа G известна под названием универсаль-ная гравитационная постоянная и чрезвычайно мала. Когда r постоянен, сила F — const . m. Притяжение Землей тела массой m определяет вес этого тела: W = mg сравнение уравнений дает: g = const = GM/r 2 .

    Притяжение Землей тела массой m заставляет его падать «вниз» с ускорением g, которое постоянно во всех точках A, В, С и повсюду на земной поверхности (рис. 3.1,6).

    Диаграмма сил свободного тела также показывает, что существует си-ла, действующая на Землю со стороны тела массой m, которая направлена противоположно силе, действующей на тело со стороны Земли. Однако масса М Земли так велика, что «на-правленное вверх» ускорение а" Зем-ли, вычисляемое по формуле F = Ma", незначительно и им можно пренебречь. Земля имеет форму, отличную от ша-рообразной: радиус на полюсе r р мень-ше радиуса на экваторе r е. Это означа-ет, что сила притяжения тела массой m на полюсе F p =GMm/r 2 p больше, чем на экваторе F e = GMm/r e . Поэтому ус-корение свободного падения g p на по-люсе больше ускорения свободного па-дения g e на экваторе. Ускорение g из-меняется с широтой в соответствии с изменением радиуса Земли.

    Как вы знаете, Земля находится в постоянном движении. Она вращает-ся вокруг своей оси, совершая один оборот каждые сутки, и движется по орбите вокруг Солнца с оборотом в один год. Принимая для упрощения Землю за однородный шар, рассмот-рим движение тел массой m на по-люсе А и на экваторе С (рис. 3.2). За одни сутки тело в точке А поворачи-вается на 360°, оставаясь на месте, в то время как тело, находящееся в точке С, покрывает расстояние в 2лг. Для того чтобы тело, находящееся в точке С, двигалось по круговой орбите, нужна какая-то сила. Это центростре-мительная сила, которая определяется по формуле mv 2 /r, где v — скорость тела на орбите. Сила гравитационно-го притяжения, действующая на тело, находящееся в точке С, F = GMm/r должна:

    а) обеспечивать движение те-ла по окружности;

    б) притягивать тело к Земле.

    Таким образом, F = (mv 2 /r)+mg на экваторе, a F = mg на полюсе. Это означает, что g изменяется с изменением широты по мере того, как радиус орбиты изменяется от r в точке С до нуля в точке А.

    Интересно представить, что бы слу-чилось, если бы скорость вращения Земли увеличилась настолько, что цен-тростремительная сила, действующая на тело на экваторе, стала бы равной силе притяжения, т. е. mv 2 /r = F = GMm/r 2 . Общая гравитационная сила использовалась бы исключитель-но для удержания тела в точке С на круговой орбите, и не осталось бы силы, действующей на поверхность Земли. Любое дальнейшее увеличе-ние скорости вращения Земли позво-лило бы телу «уплыть» в простран-ство. Вместе с тем если космический корабль с астронавтами на борту запущен на высоту R над центром Земли со скоростью v, такой, что вы-полняется равенство mv*/R=F = GMm/R 2 , то этот космический ко-рабль будет вращаться вокруг Земли в условиях невесомости.

    Точные измерения ускорения сво-бодного падения g показывают, что g изменяется с изменением широты, как показано в таблице 3.1. Отсюда сле-дует, что вес некоторого тела изме-няется над поверхностью Земли от максимума на широте 90° до миниму-ма на широте 0°.

    На этом уровне обучения обычно пренебрегают небольшими изменения-ми в ускорении g и используют сред-нюю величину 9,81 м-с 2 . Для упро-щения расчетов ускорение g часто при-нимают за ближайшее целое число, т. е. 10 м-с - 2 , и, таким образом, сила притяжения, действующая со сто-роны Земли на тело массой 1 кг, т. е. вес, принимается за 10 Н. Большин-ство экзаменационных комиссий для экзаменуемых предлагает использо-вать с целью упрощения вычислений g=10 м-с - 2 или 10 Н-кг -1 ".

Определение

Между любыми телами, которые обладают массами, действуют силы, которые притягивают вышеназванные тела друг к другу. Такие силы называют силами взаимного притяжения.

Рассмотрим две материальные точки (рис.1). Они притягиваются с силами прямо пропорциональными произведению масс этих материальных точек и обратно пропорциональными расстоянию между ними. Так, сила тяготения () будет равна:

где материальная точка массы m 2 действует на материальную точку массы m 1 с силой притяжения – радиус – вектор, который проведен из точки 2 в точку 1, модуль этого вектора равен расстоянию между материальными точками (r); G=6,67 10 -11 м 3 кг -1 с -2 (в системе СИ) – гравитационная постоянная (постоянная тяготения).

В соответствии с третьим законом Ньютона сила, с которой материальная точка 2 притягивается к материальной точке 1 () равна:

Тяготение между телами осуществляется посредством гравитационного поля (поля тяготения). Силы тяготения являются потенциальными. Это дает возможность ввести такую энергетическую характеристику гравитационного поля как потенциал, который равен отношению потенциальной энергии материальной точки, находящейся исследуемой точке поля к массе данной точки.

Формула для силы притяжения тел произвольной формы

В двух телах произвольной формы и размера выделим элементарные массы, которые можно считать материальными точками, причем:

где – плотности вещества материальных точек первого и второго тел, dV 1 ,dV 2 - элементарные объемы выделенных материальных точек. В таком случае, сила притяжения (), с которой элемент dm 2 действует на элемент dm 1 , равна:

Следовательно, сила притяжения первого тела вторым может быть найдена по формуле:

где интегрирование необходимо произвести по всему объему первого (V 1) и второго (V 2) тел. Если тела являются однородными, то выражение можно немного преобразовать и получить:

Формула для силы притяжения твердых тел шарообразной формы

Если силы притяжения рассматриваются для двух твердых тел шарообразной формы (или близких к шарам), плотность которых зависит только от расстояний до их центров формула (6) примет вид:

где m 1 ,m 2 – массы шаров, – радиус – вектор, соединяющий центры шаров,

Выражение (7) можно использовать в случае, если одно из тел имеет форму отличную от шарообразной, но его размеры много меньше, чем размеры второго тела - шара. Так, формулой (7) можно пользоваться для вычислений сил притяжения тел к Земле.

Единицы измерения силы притяжения

Основной единицей измерения силы притяжения (как и любой другой силы) в системе СИ является: =H.

В СГС: =дин.

Примеры решения задач

Пример

Задание. Какова сила притяжения двух одинаковых однородных шара масса, которых равна по 1 кг? Расстояние между их центрами равно 1 м.

Решение. Основой для решения задачи служит формула:

Для вычисления модуля силы притяжения формула (1.1) преобразуется к виду:

Проведем вычисления:

Ответ.

Пример

Задание. С какой силой (по модулю) бесконечно длинный и тонкий и прямой стержень притягивает материальную частицу массы m. Частица расположена на расстоянии a от стержня. Линейная плотность массы вещества стержня равна тау

По какому закону вы собираетесь меня повесить?
- А мы вешаем всех по одному закону - закону Всемирного Тяготения.

Закон всемирного тяготения

Явление гравитации - это закон всемирного тяготения. Два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

Математически мы можем выразить этот великий закон формулой


Тяготение действует на огромных расстояниях во Вселенной . Но Ньютон утверждал, что взаимно притягиваются все предметы. А правда ли, что любые два предмета притягивают друг друга? Только представьте, известно, что Земля притягивает вас, сидящих на стуле. Но задумывались ли о том, что компьютер и мышка притягивают друг друга? Или карандаш и ручка, лежащие на столе? В этом случае в формулу подставляем массу ручки, массу карандаша, делим на квадрат расстояния между ними, с учетом гравитационной постоянной, получаем силу их взаимного притяжения. Но, она выйдет на столько маленькой (из-за маленьких масс ручки и карандаша), что мы не ощущаем ее наличие. Другое дело, когда речь идет о Земле и стуле, или Солнце и Земле. Массы значительные, а значит действие силы мы уже можем оценить.

Вспомним об ускорении свободного падения . Это и есть действие закона притяжения. Под действием силы тело изменяет скорость тем медленнее, чем больше масса. В результате, все тела падают на Землю с одинаковым ускорением.

Чем вызвана эта невидимая уникальная сила? На сегодняшний день известно и доказано существование гравитационного поля. Узнать больше о природе гравитационного поля можно в дополнительном материале темы.

Задумайтесь, что такое тяготение? Откуда оно? Что оно собой представляет? Ведь не может быть так, что планета смотрит на Солнце, видит, насколько оно удалено, подсчитывает обратный квадрат расстояния в соответствии с этим законом?

Направление силы притяжения

Есть два тела, пусть тело А и В. Тело А притягивает тело В. Сила, с которой тело А воздействует, начинается на теле B и направлена в сторону тела А. То есть как бы "берет" тело B и тянет к себе. Тело В "проделывает" то же самое с телом А.



Каждое тело притягивается Землей. Земля "берет" тело и тянет к своему центру. Поэтому эта сила всегда будет направлена вертикально вниз, и приложена она с центра тяжести тела, называют ее силой тяжести.

Главное запомнить

Некоторые методы геологической разведки, предсказание приливов и в последнее время расчет движения искусственных спутников и межпланетных станций. Заблаговременное вычисление положения планет.

Можем ли мы сами поставить такой опыт, а не гадать, притягиваются ли планеты, предметы?

Такой прямой опыт сделал Кавендиш (Генри Кавендиш (1731-1810) - английский физик и химик) при помощи прибора, который показан на рисунке. Идея состояла в том, чтобы подвесить на очень тонкой кварцевой нити стержень с двумя шарами и затем поднести к ним сбоку два больших свинцовых шара. Притяжение шаров слегка перекрутит нить - слегка, потому что силы притяжения между обычными предметами очень слабы. При помощи такого прибора Кавендишу удалось непосредственно измерить силу, расстояние и величину обеих масс и, таким образом, определить постоянную тяготения G .

Уникальное открытие постоянной тяготения G, которая характеризует гравитационное поле в пространстве, позволила определить массу Земли, Солнца и других небесных тел. Поэтому Кавендиш назвал свой опыт "взвешиванием Земли".

Интересно, что у различных законов физики есть некоторые общие черты. Обратимся к законам электричества (сила Кулона) . Электрические силы также обратно пропорциональны квадрату расстояния, но уже между зарядами , и невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Как можно говорить, что одно действует сильнее другого? Ведь все зависит от того, какова масса и каков заряд. Рассуждая о том, насколько сильно действует тяготение, вы не вправе говорить: "Возьмем массу такой-то величины", потому что вы выбираете ее сами. Но если мы возьмем то, что предлагает нам сама Природа (ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами, с нашими мерами), тогда мы сможем сравнивать. Мы возьмем элементарную заряженную частицу, такую, например, как электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Вопрос: каково отношение силы тяготения к электрической силе? Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Это вызывает глубочайшее недоумение. Откуда могло взяться такое огромное число?

Люди ищут этот огромный коэффициент в других явлениях природы. Они перебирают всякие большие числа, а если вам нужно большое число, почему не взять, скажем, отношение диаметра Вселенной к диаметру протона - как ни удивительно, это тоже число с 42 нулями. И вот говорят: может быть, этот коэффициент и равен отношению диаметра протона к диаметру Вселенной? Это интересная мысль, но, поскольку Вселенная постепенно расширяется, должна меняться и постоянная тяготения. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

Эйнштейну пришлось видоизменить законы тяготения в соответствии с принципами относительности. Первый из этих принципов гласит, что расстояние х нельзя преодолеть мгновенно, тогда как по теории Ньютона силы действуют мгновенно. Эйнштейну пришлось изменить законы Ньютона. Эти изменения, уточнения очень малы. Одно из них состоит вот в чем: поскольку свет имеет энергию, энергия эквивалентна массе, а все массы притягиваются, - свет тоже притягивается и, значит, проходя мимо Солнца, должен отклоняться. Так оно и происходит на самом деле. Сила тяготения тоже слегка изменена в теории Эйнштейна. Но этого очень незначительного изменения в законе тяготения как раз достаточно, чтобы объяснить некоторые кажущиеся неправильности в движении Меркурия.

Физические явления в микромире подчиняются иным законам, нежели явления в мире больших масштабов. Встает вопрос: как проявляется тяготение в мире малых масштабов? На него ответит квантовая теория гравитации. Но квантовой теории гравитации еще нет. Люди пока не очень преуспели в создании теории тяготения, полностью согласованной с квантовомеханическими принципами и с принципом неопределенности.

ПостНаука развенчивает научные мифы и объясняет общепринятые заблуждения. Мы попросили наших экспертов рассказать о гравитации - силе, из-за которой все тела стремятся упасть на Землю, - и единственном фундаментальном взаимодействии, в котором напрямую участвуют все частицы, которые мы знаем.

Искусственные спутники Земли будут обращаться вокруг нее вечно

Это правда, но отчасти. Зависит это от орбиты. На низких орбитах спутники вечно вокруг Земли не обращаются. Это связано с тем, что, помимо гравитации, существуют и другие факторы. То есть если бы, допустим, у нас была только Земля и мы бы запустили на ее орбиту спутник, то он летал бы очень долго. Летать вечно он не будет, потому что существуют различные возмущающие факторы, которые его могут свести с орбиты. В первую очередь это торможение в атмосфере, то есть это негравитационные факторы. Таким образом, связь этого мифа с гравитацией неочевидна.

Если спутник обращается на высоте до тысячи километров над Землей, то торможение в атмосфере будет влиять. На более высоких орбитах начинают действовать прочие гравитационные факторы - притяжение Луны, других планет . Если спутник оставить бесконтрольно на орбите вокруг Земли, то его орбита будет эволюционировать хаотически на больших интервалах времени из-за того, что Земля не единственное притягивающее тело. Не уверен, что эта хаотическая эволюция обязательно приведет к падению спутника на Землю - он может улететь или перейти на другую орбиту. Другими словами, он может летать вечно, но не по одной и той же орбите.

В космосе нет гравитации

Это неправда. Иногда кажется, что раз на МКС космонавты находятся в состоянии невесомости, то и земная гравитация на них не действует. Это не так. Более того, она там почти такая же, как на Земле.

В самом деле, сила гравитационного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна расстоянию между ними. Высота орбиты МКС примерно на 10% больше земного радиуса. Поэтому сила притяжения там лишь немного меньше. Однако космонавты испытывают состояние невесомости, так как они как бы все время падают на Землю, но промахиваются.

Можно представить себе такую картину. Построим башню высотой километров 400 (неважно, что сейчас нет таких материалов, чтобы ее сделать). Поставим наверху стул и сядем на него. Мимо пролетает МКС, то есть мы находимся совсем-совсем рядом. Мы сидим на стуле и «весим» (хотя по сравнению с нашим весом на поверхности Земли мы полегчали, но зато нам надо надеть скафандр, так что это компенсирует наше «похудание»), а на МКС космонавты парят в невесомости. Но мы находимся в одном и том же гравитационном потенциале.

Современные теории гравитации являются геометрическими. То есть массивные тела искажают пространство-время вокруг себя. Чем ближе мы к тяготеющему телу, тем больше искажение. Как вы двигаетесь по искривленному пространству - это уже не так важно. Оно остается искривленным, то есть гравитация никуда не делась.

Парад планет может «уменьшить гравитацию» на Земле

Это неправда. Парадами планет называют такие моменты, когда все планеты выстраиваются в цепочку по направлению к Солнцу и их гравитационные силы складываются арифметически. Разумеется, на одной прямой все планеты никогда не соберутся, но если ограничиться требованием, чтобы все восемь планет собрались в гелиоцентрическом секторе с углом раствора не более 90°, то такие «большие» парады иногда происходят - в среднем один раз за 120 лет.

Может ли совместное влияние планет изменить гравитацию на Земле? Любители физики знают, что сила тяготения изменяется прямо пропорционально массе тела и обратно пропорционально квадрату расстояния до него (М/R2). Наибольшее гравитационное влияние на Землю оказывают (она не очень массивна, но расположена близко) и (он очень массивен). Простой расчет показывает, что наше притяжение к Венере даже при наибольшем с ней сближении в 50 млн раз слабее нашего притяжения к Земле; для Юпитера это соотношение составляет 30 млн. То есть если ваш вес около 70 кг, то Венера и Юпитер тянут вас к себе с силой примерно в 1 миллиграмм. Во время парада планет они тянут в разные стороны, практически компенсируя влияние друг друга.

Но это еще не все. Обычно под гравитацией Земли мы понимаем не силу притяжения к планете, а наш вес.

А он зависит еще и от того, как мы движемся. Например, космонавтов на МКС и нас с вами Земля притягивает почти одинаково, но у них там невесомость, поскольку они находятся в состоянии свободного падения, а мы упираемся в Землю. А по отношению к другим планетам мы все ведем себя, как экипаж МКС: вместе с Землей мы свободно «падаем» на каждую из окружающих планет. Поэтому мы не ощущаем даже того миллиграмма, о котором было сказано выше.

Но некоторый эффект все же есть. Дело в том, что мы, живя на поверхности Земли, и сама Земля, если иметь в виду ее центр, находимся на разном расстоянии от притягивающих нас планет. Эта разница не превышает размера Земли, но иногда имеет значение. Именно из-за нее в океанах под влиянием притяжения Луны и Солнца возникают приливы и отливы. Но если иметь в виду человека и притяжение к планетам, то этот приливный эффект невероятно слаб (в десятки тысяч раз слабее прямого притяжения к планетам) и составляет для каждого из нас менее одной миллионной доли грамма - практически ноль.

Владимир Сурдин

кандидат физико-математических наук, старший научный сотрудник Государственного астрономического института им. П. К. Штернберга МГУ

Тело, подлетающее к черной дыре, будет разорвано

Это неправда. При приближении к сила гравитации и приливные силы возрастают. Но вовсе не обязательно приливные силы становятся крайне велики, когда объект подлетает к горизонту событий.

Приливные силы зависят от массы, вызывающего прилив тела, расстояния до него и от размеров объекта, в котором формируется прилив. Важно, что расстояние считается до центра тела, а не до поверхности. Так что приливные силы на горизонте черной дыры всегда имеют конечное значение.

У черной дыры размер прямо пропорционален массе. Так что, если мы возьмем какой-то предмет и будем кидать его в разные черные дыры, приливные силы будут зависеть только от массы черной дыры. Причем чем больше масса, тем прилив слабее на горизонте.