Про психологию. Учения и методики

Фундаментальные частицы. О понимании движения материи, способности ее к саморазвитию, а также связи и взаимодействии материальных объектов в современном естествознании Фундаментальная частица 6

Лептоны не участвуют в сильном взаимодействии. электрон. позитрон. мюон. нейтрино легкая нейтральная частица, участвующая только в слабом и гравитационном взаимодействии. нейтринный (# поток). кварки. переносчики взаимодействий: фотон квант света …

Запрос «Фундаментальные исследования» перенаправляется сюда; см. также другие значения. Фундаментальная наука область познания, подразумевающая теоретические и экспериментальные научные исследования основополагающих явлений (в том числе и… … Википедия

Запрос «Элементарные частицы» перенаправляется сюда; см. также другие значения. Элементарная частица собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части. Следует иметь в… … Википедия

Элементарная частица собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить (или пока это не доказано) на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие… … Википедия

электрон - ▲ фундаментальная частица имеющий, элемент, заряд электрон отрицательно заряженная элементарная частица с элементарным электрическим зарядом. ↓ … Идеографический словарь русского языка

Элементарная частица собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить (или пока это не доказано) на составные части. Их строение и поведение изучается физикой элементарных частиц. Понятие… … Википедия

У этого термина существуют и другие значения, см. Нейтрино (значения). электронное нейтрино мюонное нейтрино тау нейтрино Символ: νe νμ ντ Состав: Элементарная частица Семья: Фермионы … Википедия

Тип фундаментальных взаимодействий (наряду с гравитационным, слабым и сильным), который характеризуется участием электромагнитного поля (См. Электромагнитное поле) в процессах взаимодействия. Электромагнитное поле (в квантовой физике… … Большая советская энциклопедия

Одно из наиболее многозначных филос. понятий, которому придается один (или некоторые) из следующих смыслов: 1) то, определяющими характеристиками чего являются протяженность, место в пространстве, масса, вес, движение, инерция, сопротивление,… … Философская энциклопедия

Книги

  • Кинетическая теория гравитации и основы единой теории материи , В. Я. Бриль. Все материальные объекты Природы (и вещественные, и полевые) дискретны. Они состоят из элементарных частиц струнообразной формы. Недеформированная фундаментальная струна - полевая частица,…

Структуры микромира

Ранее элементарными частицами называли частицы, входящие в состав атома и неразложимые на более элементарные составляющие, а именно электроны и ядра.

Позднее было установлено, что ядра состоят из более простых частиц – нуклонов (протонов и нейтронов), которые в свою очередь состоят из других частиц. Поэтому элементарными частицами стали считать мельчайшие частицы материи , исключая атомы и их ядра .

На сегодняшний день открыты сотни элементарных частиц, что требует их классификации:

– по видам взаимодействий

– по временам жизни

– по величине спина

Элементарные частицы делятся на следующие группы:

Составные и фундаментальные (бесструктурные) частицы

Составные частицы

Адроны (тяжелые) – частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на: мезоны – адроны с целым спином, то есть являющиеся бозонами; барионы – адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, – протон и нейтрон, т.е. нуклонов .

Фундаментальные (бесструктурные) частицы

Лептоны (легкие) – фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10 − 18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино.

Кварки – дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались.

Калибровочные бозоны – частицы, посредством обмена которыми осуществляются взаимодействия:

– фотон – частица, переносящая электромагнитное взаимодействие;

– восемь глюонов – частиц, переносящих сильное взаимодействие;

– три промежуточных векторных бозона W + , W − и Z 0 , переносящие слабое взаимодействие;

– гравитон – гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

По современным представлениям, к фундаментальным частицам (или «истинно» элементарным частицам), не имеющим внутренней структуры и конечных размеров, относятся :

Кварки и лептоны

Частицы, обеспечивающие фундаментальные взаимодействия: гравитоны, фотоны, векторные бозоны, глюоны.

Классификация элементарных частиц по временам жизни :

- стабильные: частицы, время жизни которых очень велико (в пределе стремится к бесконечности). К ним относятся электроны , протоны , нейтрино . Внутри ядер стабильны также нейтроны, но они нестабильны вне ядра

- нестабильные (квазистабильные): элементарные частицы – это такие частицы, которые распадаются за счет электромагнитного и слабого взаимодействий, и время жизни которых больше 10 –20 сек. К таким частицам относится свободный нейтрон (т.е. нейтрон вне ядра атома)

- резонансы (нестабильные, краткоживущие). К резонансам относятся элементарные частицы, распадающиеся за счет сильного взаимодействия. Время жизни для них меньше 10 -20 сек.

Классификация частиц по участию во взаимодействиях :

- лептоны : к их числу относятся и нейтроны. Все они не участвуют в водовороте внутриядерных взаимодействий, т.е. не подвержены сильному взаимодействию. Они участвуют в слабом взаимодействии, а имеющие электрический заряд участвуют и в электромагнитном взаимодействии

- адроны : частицы, существующие внутри атомного ядра и участвующие в сильном взаимодействии. Самые известные из них это протон и нейтрон .

На сегодня известны шесть лептонов :

К одному семейству с электроном относятся мюоны и тау-частицы, которые похожи на электрон, но массивнее его. Мюоны и тау-частицы нестабильны и со временем распадаются на несколько других частиц, включая электрон

Три электрически нейтральных частицы с нулевой (или близкой к нулю, на этот счет ученые пока не определились) массой, получившие название нейтрино . Каждое из трех нейтрино (электронное нейтрино, мюонное нейтрино, тау-нейтрино) парно одному из трех разновидностей частиц электронного семейства.

У самых известных адронов , протонов и нейтрино имеются сотни родственников, которые во множестве рождаются и тут же распадаются в процессе различных ядерных реакций. За исключением протона, все они нестабильны, и их можно классифицировать по составу частиц, на которые они распадаются:

Если среди конечных продуктов распада частиц имеется протон, то его называют барион

Если протона среди продуктов распада нет, то частица называется мезон .

Сумбурная картина субатомного мира, усложнявшаяся с открытием каждого нового адрона, уступила место новой картине, с появлением концепции кварков. Согласно кварковой модели, все адроны (но не лептоны) состоят из еще более элементарных частиц – кварков. Так барионы (в частности протон) состоят из трех кварков, а мезоны – из пары кварк – антикварк.

Еще сравнительно недавно элементарными считались несколько сот частиц и античастиц. Детальное изучение их свойств и взаимодействий с другими частицами и развитие теории показали, что большинство из них на самом деле не элементарны, так как сами состоят из простейших или, как сейчас говорят, фундаментальных частиц. Фундаментальные частицы сами уже ни из чего не состоят. Многочисленные эксперименты показали, что все фундаментальные частицы ведут себя как безразмерные точечные объекты, не имеющие внутренней структуры, по крайней мере до наименьших, изученных сейчас расстояний ~10 -16 см.

Введение

Среди бесчисленных и разнообразных процессов взаимодействия между частицами имеются четыре основных или фундаментальных взаимодействия: сильное (ядерное), электромагнитное, и гравитационное. В мире частиц гравитационное взаимодействие очень слабое, его роль еще неясна, и о нем дальше мы говорить не будем.

В природе существуют две группы частиц: адроны, которые участвуют во всех фундаментальных взаимодействиях, и лептоны, не участвующие только в сильном взаимодействии.

Согласно современным представлениям, взаимодействия между частицами осуществляются посредством испускания и последующего поглощения квантов соответствующего поля (сильного, слабого, электромагнитного), окружающего частицу. Такими квантами являются калибровочные бозоны, также являющиеся фундаментальными частицами. У бозонов собственный момент количества движения, называемый спином, равен целочисленному значению постоянной Планка $h = 1,05 \cdot 10^{-27} эрг \cdot с$. Квантами поля и соответственно переносчиками сильного взаимодействия являются глюоны, обозначаемые символом g, квантами электромагнитного поля являются хорошо известные нам кванты света - фотоны, обозначаемые $\gamma $, а квантами слабого поля и соответственно переносчиками слабых взаимодействий являются W ± (дубль ве)- и Z 0 (зет нуль)-бозоны.

В отличие от бозонов все остальные фундаментальные частицы являются фермионами, то есть частицами, имеющими полуцелое значение спина, равное h /2.

В табл. 1 приведены символы фундаментальных фермионов - лептонов и кварков.

Каждой частице, приведенной в табл. 1, соответствует античастица, отличающаяся от частицы лишь знаками электрического заряда и других квантовых чисел (см. табл. 2) и направлением спина относительно направления импульса частицы. Античастицы мы будем обозначать теми же символами, как и частицы, но с волнистой чертой над символом.

Частицы в табл. 1 обозначены греческими и латинскими буквами, а именно: буквой $\nu$ - три различных нейтрино, буквами е - электрон, $\mu$ - мюон, $\tau$ - таон, буквами u, c, t, d, s, b обозначены кварки; их наименования и характеристики приведены в табл. 2.

Частицы в табл. 1 сгруппированы в три поколения I, II и III в соответствии со структурой современной теории . Наша Вселенная построена из частиц первого поколения - лептонов и кварков и калибровочных бозонов, но, как показывает современная наука о развитии Вселенной, на начальной стадии ее развития важную роль играли частицы всех трех поколений.

Лептоны Кварки
I II III
$\nu_e$
e
$\nu_{\mu}$
$\mu$
$\nu_{\tau}$
$\tau$
I II III
u
d
c
s
t
b

Лептоны

Сначала рассмотрим более подробно свойства лептонов. В верхней строке табл. 1 содержатся три разных нейтрино: электронное $\nu_e$, мюонное $\nu_m$ и тау-нейтрино $\nu_t$. Их масса до сих пор точно не измерена, но определен ее верхний предел, например для ne равный 10 -5 от величины массы электрона (то есть $\leq 10^{-32}$ г).

При взгляде на табл. 1 невольно возникает вопрос о том, зачем природе потребовалось создание трех разных нейтрино. Ответа на этот вопрос пока нет, ибо не создана такая всеобъемлющая теория фундаментальных частиц, которая бы указала на необходимость и достаточность всех таких частиц и описала бы их основные свойства. Возможно, эта проблема будет решена в XXI веке (или позже).

Нижняя строка табл. 1 начинается с наиболее изученной нами частицы - электрона. Электрон был открыт еще в конце прошлого века английским физиком Дж. Томсоном. Роль электронов в нашем мире огромна. Они являются теми отрицательно заряженными частицами, которые вместе с атомными ядрами образуют все атомы известных нам элементов Периодической таблицы Менделеева. В каждом атоме число электронов в точности равно числу протонов в атомном ядре, что и делает атом электрически нейтральным.

Электрон стабилен, главной возможностью уничтожения электрона является его гибель при соударении с античастицей - позитроном e + . Этот процесс получил название аннигиляции:

$$e^- + e^+ \to \gamma + \gamma .$$

В результате аннигиляции образуются два гамма-кванта (так называют фотоны высокой энергии), уносящие и энергии покоя e + и e - , и их кинетические энергии. При высокой энергии e + и e - образуются адроны и кварковые пары (см., например, (5) и рис. 4).

Реакция (1) наглядно иллюстрирует справедливость знаменитой формулы А. Эйнштейна об эквивалентности массы и энергии: E = mc 2 .

Действительно, при аннигиляции остановившегося в веществе позитрона и покоящегося электрона вся масса их покоя (равная 1,22 МэВ) переходит в энергию $\gamma$-квантов, которые не имеют массы покоя.

Во втором поколении нижней строки табл. 1 расположен >мюон - частица, являющаяся по всем своим свойствам аналогом электрона, но с аномально большой массой. Масса мюона в 207 раз больше массы электрона. В отличие от электрона мюон нестабилен. Время его жизни t = 2,2 · 10 -6 с. Мюон преимущественно распадается на электрон и два нейтрино по схеме

$$\mu^- \to e^- + \tilde \nu_e +\nu_{\mu}$$

Еще более тяжелым аналогом электрона является $\tau$-лептон (таон). Его масса более чем в 3 тыс. раз превосходит массу электрона ($m_{\tau} = 1777$ МэВ/с 2), то есть таон тяжелее протона и нейтрона. Время его жизни равно 2,9 · 10 -13 с, а из более чем ста разных схем (каналов) его распада возможны следующие:

$$\tau^-\left\langle\begin{matrix} \to e^- + \tilde \nu_e +\nu_{\tau}\\ \to \mu^- + \tilde \nu_\mu +\nu_{\tau} \end{matrix}\right.$$

Говоря о лептонах, интересно сравнить слабые и электромагнитные силы на некотором определенном расстоянии, например R = 10 -13 см. На таком расстоянии электромагнитные силы больше слабых сил почти в 10 млрд раз. Но это вовсе не значит, что роль слабых сил в природе мала. Отнюдь нет.

Именно слабые силы ответственны за множество взаимных превращений различных частиц в другие частицы, как, например, в реакциях (2), (3), и такие взаимопревращения являются одной из характернейших черт физики частиц. В отличие от реакций (2), (3) в реакции (1) действуют электромагнитные силы.

Говоря о лептонах, необходимо добавить, что современная теория описывает электромагнитные и слабые взаимодействия с помощью единой электрослабой теории. Она разработана С. Вайнбергом, А. Саламом и Ш. Глэшоу в 1967 году .

Кварки

Сама идея кварков возникла в результате блестящей попытки классифицировать большое количество частиц, участвующих в сильных взаимодействиях и называемых адронами. М. Гелл-Ман и Г. Цвейг предположили, что все адроны состоят из соответствующего набора фундаментальных частиц - кварков, их антикварков и переносчиков сильного взаимодействия - глюонов .

Полное число адронов, наблюденное в настоящее время, составляет более ста частиц (и столько же античастиц). Много десятков частиц еще не зарегистрировано. Все адроны подразделяются на тяжелые частицы, названные барионами , и средние, названные мезонами .

Барионы характеризуются барионным числом b = 1 для частиц и b  = -1 для антибарионов. Их рождение и уничтожение всегда происходят парами: бариона и антибариона. У мезонов барионный заряд b  = 0. Согласно идее Гелл-Мана и Цвейга, все барионы состоят из трех кварков, антибарионы - из трех антикварков. Поэтому каждому кварку было приписано барионное число 1/3, чтобы в сумме у бариона было b = 1 (или -1 для антибариона, состоящего из трех антикварков). Мезоны имеют барионное число b = 0, поэтому они могут быть составлены из любой комбинации пар любого кварка и любого антикварка. Помимо одинаковых для всех кварков квантовых чисел - спина и барионного числа имеются другие важные их характеристики, такие, как величина их массы покоя m , величина электрического заряда Q /e (в долях заряда электрона е = 1,6 · 10 -19 кулон) и некоторого набора квантовых чисел, характеризующих так называемый аромат кварка . К ним относятся:

1) величина изотопического спина I и величина его третьей проекции, то есть I 3 . Так, u -кварк и d -кварк образуют изотопический дублет, им приписан полный изотопический спин I = 1/2 с проекциями I 3 = +1/2, соответствующей u -кварку, и I 3 = -1/2, соответствующей d -кварку. Обе компоненты дублета имеют близкие значения массы и идентичны по всем остальным свойствам, за исключением электрического заряда;

2) квантовое число S - странность характеризует странное поведение некоторых частиц, имеющих аномально большое время жизни (~10 -8 - 10 -13 с) по сравнению с характерным ядерным временем (~10 -23 с). Сами частицы были названы странными, в их состав входит один или несколько странных кварков и странных антикварков. Рождение или исчезновение странных частиц вследствие сильных взаимодействий происходят парами, то есть в любой ядерной реакции сумма $\Sigma$S до реакции должна быть равна $\Sigma$S после реакции. Однако в слабых взаимодействиях закон сохранения странности не выполняется.

В опытах на ускорителях наблюдали частицы, которые было невозможно описать с помощью u -, d - и s -кварков. По аналогии со странностью потребовалось ввести еще три новых кварка с новыми квантовыми числами С = +1, В = -1 и Т = +1. Частицы, составленные из этих кварков, имеют существенно большую массу (> 2 ГэВ/с 2). Они имеют большое разнообразие схем распадов со временем жизни ~10 -13 с. Сводка характеристик всех кварков приведена в табл. 2.

Каждому кварку табл. 2 соответствует свой антикварк. У антикварков все квантовые числа имеют знак, противоположный тому, который указан для кварка. О величине массы кварков необходимо сказать следующее. Приведенные в табл. 2 значения соответствуют массам голых кварков, то есть собственно кварков без учета окружающих их глюонов. Масса одетых кварков за счет энергии, несомой глюонами, больше. Особенно это заметно для легчайших u - и d -кварков, глюонная шуба которых имеет энергию около 300 МэВ.

Кварки, которые определяют основные физические свойства частиц, называют валентными кварками. Помимо валентных кварков в составе адронов имеются виртуальные пары частиц - кварки и антикварки, которые испускаются и поглощаются глюонами на очень короткое время

(где Е - энергия виртуальной пары), что происходит с нарушением закона сохранения энергии в соответствии с соотношением неопределенности Гейзенберга . Виртуальные пары кварков называют кварками моря или морскими кварками . Таким образом, в структуру адронов входят валентные и морские кварки и глюоны.

Главная особенность всех кварков в том, что они являются обладателями соответствующих сильных зарядов. Заряды сильного поля имеют три равноправные разновидности (вместо одного электрического заряда в теории электрических сил). В исторически сложившейся терминологии эти три разновидности заряда называют цветами кварков, а именно: условно красным, зеленым и синим. Таким образом, каждый кварк в табл. 1 и 2 может быть в трех ипостасях и является цветной частицей. Смешение всех трех цветов, подобно тому как это имеет место в оптике, дает белый цвет, то есть обесцвечивает частицу. Все наблюдаемые адроны бесцветны.

Кварки u (up) d (down) s (strange) c (charm) b (bottom) t (top)
Масса m 0 (1,5-5) МэВ/с 2 (3-9) МэВ/с 2 (60-170) МэВ/с 2 (1,1-4,4) ГэВ/с 2 (4,1-4,4) ГэВ/с 2 174 ГэВ/с 2
Изоспин I +1/2 +1/2 0 0 0 0
Проекция I 3 +1/2 -1/2 0 0 0 0
Электрический заряд Q /e +2/3 -1/3 -1/3 +2/3 -1/3 +2/3
Странность S 0 0 -1 0 0 0
Чарм C 0 0 0 +1 0 0
Боттом B 0 0 0 0 -1 0
Топ T 0 0 0 0 0 +1

Взаимодействия кварков осуществляют восемь разных глюонов. Термин "глюон" означает в переводе с английского языка клей, то есть эти кванты поля есть частицы, которые как бы склеивают кварки между собой. Как и кварки, глюоны являются цветными частицами, но поскольку каждый глюон изменяет цвета сразу двух кварков (кварка, который испускает глюон, и кварка, который поглотил глюон), то глюон окрашен дважды, неся на себе цвет и антицвет, как правило отличный от цвета.

Масса покоя глюонов, как и у фотона, равна нулю. Кроме того, глюоны электрически нейтральны и не обладают слабым зарядом.

Адроны принято также делить на стабильные частицы и резонансы: барионные и мезонные.
Для резонансов характерно чрезвычайно малое время жизни (~10 -20 -10 -24 с), так как их распад обусловлен сильным взаимодействием.

Десятки таких частиц были открыты американским физиком Л.В. Альваресом. Поскольку путь таких частиц до распада столь мал, что они не могут наблюдаться в детекторах, регистрирующих следы частиц (таких, как пузырьковая камера и др.), все они были обнаружены косвенно, по наличию пиков в зависимости вероятности взаимодействия различных частиц друг с другом от энергии. Рисунок 1 поясняет сказанное. На рисунке приведена зависимость сечения взаимодействия (пропорциональное величине вероятности) положительного пиона $\pi^+$ с протоном p от кинетической энергии пиона. При энергии около 200 МэВ виден пик в ходе сечения. Его ширина $\Gamma = 110$ МэВ, а полная масса частицы $\Delta^{++}$ равна $T^{"}_{max}+M_p c^2+M_\pi c^2=1232$ МэВ/с 2 , где $T^{"}_{max}$ - кинетическая энергия соударения частиц в системе их центра масс. Большинство резонансов можно рассматривать как возбужденное состояние стабильных частиц, так как они имеют тот же кварковый состав, что и их стабильные аналоги, хотя масса резонансов больше за счет энергии возбуждения.

Кварковая модель адронов

Кварковую модель адронов начнем описывать с рисунка силовых линий, исходящих из источника - кварка с цветным зарядом и заканчивающихся на антикварке (рис. 2, б ). Для сравнения на рис. 2, а мы показываем, что в случае электромагнитного взаимодействия силовые линии расходятся от их источника - электрического заряда веером, ибо виртуальные фотоны, испущенные одновременно источником, не взаимодействуют друг с другом. В результате получаем закон Кулона.

В отличие от этой картины глюоны сами обладают цветными зарядами и сильно взаимодействуют друг с другом. В результате вместо веера из силовых линий мы имеем жгут, показанный на рис. 2, б . Жгут протянут между кварком и антикварком, но самое удивительное то, что сами глюоны, имея цветные заряды, становятся источниками новых глюонов, число которых нарастает по мере их удаления от кварка.
Такая картина взаимодействия соответствует зависимости потенциальной энергии взаимодействия между кварками от расстояния между ними, показанной на рис. 3. А именно: до расстояния R > 10 -13 см зависимость U(R) имеет воронкообразный характер, причем сила цветного заряда в этой области расстояний относительно невелика, так что кварки при R > 10 -15 cм в первом приближении можно рассматривать как свободные, невзаимодействующие частицы. Это явление имеет специальное название асимптотической свободы кварков при малых R . Однако при R больше некоторого критического $R_{кр} \approx 10^{-13}$ cм величина потенциальной энергии взаимодействия U (R ) становится прямо пропорциональной величине R . Отсюда прямо следует, что сила F = -dU /dR = const, то есть не зависит от расстояния. Никакие другие взаимодействия, которые физики ранее изучили, не обладали столь необычным свойством .

Расчеты показывают, что силы, действующие между кварком и антикварком, действительно, начиная с $R_{кр} \approx 10_{-13}$ см, перестают зависеть от расстояния, оставаясь на уровне огромной величины, близкой 20 т. На расстоянии R ~ 10 -12 см (равном радиусу средних атомных ядер) цветные силы более чем в 100 тыс. раз больше электромагнитных сил. Если сравнить цветную силу с ядерными силами между протоном и нейтроном внутри атомного ядра, то оказывается, что цветная сила в тысячи раз больше! Таким образом, перед физиками открылась новая грандиозная картина цветных сил в природе, на много порядков превышающих ныне известные ядерные силы. Конечно, сразу же возникает и вопрос о том, можно ли такие силы заставить работать как источник энергии. К сожалению, ответ на этот вопрос отрицательный.

Естественно, встает и другой вопрос: до каких расстояний R между кварками потенциальная энергия линейно растет с ростом R ?
Ответ простой: при больших расстояниях жгут силовых линий рвется, так как энергетически более выгодно образовать разрыв с рождением кварк-антикварковой пары частиц. Это происходит, когда потенциальная энергия в месте разрыва больше массы покоя кварка и антикварка. Процесс разрыва жгута силовых линий глюонного поля показан на рис. 2, в .

Такие качественные представления о рождении кварка-антикварка позволяют понять, почему одиночные кварки вообще не наблюдаются и не могут наблюдаться в природе. Кварки навечно заключены внутри адронов. Это явление невылета кварков называется конфайнментом . При высоких энергиях жгуту может быть выгоднее разорваться сразу во многих местах, образовав множество $q \tilde q$-пар. Таким путем мы подошли к проблеме множественного рождения кварк-антикварковых пар и образованию жестких кварковых струй.

Рассмотрим сначала строение легких адронов, то есть мезонов. Они состоят, как мы уже говорили, из одного кварка и одного антикварка.

Чрезвычайно важно, что оба партнера пары имеют при этом одинаковый цветной заряд и такой же антизаряд (например, кварк синий и антикварк антисиний), так что их пара независимо от ароматов кварков не имеет цвета (а только бесцветные частицы мы и наблюдаем).

Все кварки и антикварки имеют спин (в долях от h ), равный 1/2. Поэтому суммарный спин сочетания кварка с антикварком равен либо 0, когда спины антипараллельны, либо 1, когда спины параллельны друг другу. Но спин частицы может быть и больше 1, если сами кварки вращаются по каким-либо орбитам внутри частицы.

В табл. 3 приведены некоторые парные и более сложные комбинации кварков с указанием, каким известным ранее адронам данное сочетание кварков соответствует.

Кварки Мезоны Кварки Барионы
J =0 J =1 J =1/2 J =3/2
частицы резонансы частицы резонансы
$\pi^+$
$\rho^+$
uuu $\Delta^{++}$
$\tilde u d$ $\pi^-$
$\rho^-$
uud p
$\Delta^+$
$u \tilde u - d \tilde d$ $\pi^0$
$\rho^0$
udd n
(нейтрон)
\Delta^0
(дельта0)
$u \tilde u + d \tilde d$ $\eta$
$\omega$
ddd $\Delta^-$
$d \tilde s$ $k^0$
$k^0*$
uus $\Sigma^+$
$\Sigma^+*$
$u \tilde s$ $k^+$
$k^+*$
uds $\Lambda^0$
$\Sigma^0*$
$\tilde u s$ $k^-$
$k^-*$
dds $\Sigma^-$
$\Sigma^-*$
$c \tilde d$ $D^+$
$D^+*$
uss $\Xi^0$
$\Xi^0*$
$c \tilde s$ $D^+_s$
$D^+_s*$
dss $\Xi^-$
$\Xi^-*$
$c \tilde c$ Чармоний $J/\psi$
sss $\Omega^-$
$b \tilde b$ Боттоний Ипсилон udc $\Lambda^+_c$
(лямбда-цэ+)
$c \tilde u$ $D^0$
$D^0*$
uuc $\Sigma^{++}_c$
$b \tilde u$ $B^-$
$B*$
udb $\Lambda_b$

Из наиболее изученных в настоящее время мезонов и мезонных резонансов наибольшую группу составляют легкие неароматные частицы, у которых квантовые числа S = C = B = 0. В эту группу входят около 40 частиц. Таблица 3 начинается с пионов $\pi$ ±,0 , открытых английским физиком С.Ф. Пауэллом в 1949 году. Заряженные пионы живут около 10 -8 с, распадаясь на лептоны по следующим схемам:

$\pi^+ \to \mu + \nu_{\mu}$ и $\pi^- \to \mu^- + \tilde \nu_{\mu}$.

Их "родственники" в табл. 3 - резонансы $\rho$ ±,0 (ро-мезоны) имеют в отличие от пионов спин J = 1, они нестабильны и живут всего около 10 -23 с. Причина распада $\rho$ ±,0 - сильное взаимодействие.

Причина распада заряженных пионов обусловлена слабым взаимодействием, а именно тем, что составляющие частицу кварки способны испускать и поглощать в результате слабого взаимодействия на короткое время t в соответствии с соотношением (4) виртуальные калибровочные бозоны: $u \to d + W^+$ или $d \to u + W^-$, причем в отличие от лептонов осуществляются и переходы кварка одного поколения в кварк другого поколения, например $u \to b + W^+$ или $u \to s + W^+$ и т.д., хотя такие переходы существенно более редкие, чем переходы в рамках одного поколения. Вместе с тем при всех подобных превращениях электрический заряд в реакции сохраняется.

Изучение мезонов, включающих s - и c -кварки, привело к открытию нескольких десятков странных и чармированных частиц. Их исследование проводится сейчас во многих научных центрах мира.

Изучение мезонов, включающих b - и t -кварки, интенсивно началось на ускорителях, и мы пока не будем говорить о них более подробно.

Перейдем к рассмотрению тяжелых адронов, то есть барионов. Все они составлены из трех кварков, но таких, у которых имеются все три разновидности цвета, поскольку, так же как и мезоны, все барионы бесцветны. Кварки внутри барионов могут иметь орбитальное движение. В этом случае суммарный спин частицы будет превышать суммарный спин кварков, равный 1/2 или 3/2 (если спины всех трех кварков параллельны друг другу).

Барионом с минимальной массой является протон p (см. табл. 3). Именно из протонов и нейтронов состоят все атомные ядра химических элементов. Число протонов в ядре определяет его суммарный электрический заряд Z .

Другой основной частицей атомных ядер является нейтрон n . Нейтрон немного тяжелее протона, он неустойчив и в свободном состоянии со временем жизни около 900 с распадается на протон, электрон и нейтрино. В табл. 3 показано кварковое состояние протона uud и нейтрона udd . Но при спине этой комбинации кварков J = 3/2 образуются резонансы $\Delta^+$ и $D^0$ соответственно. Все другие барионы, состоящие из более тяжелых кварков s , b , t , имеют и существенно большую массу. Среди них особый интерес вызывал W - -гиперон, состоящий из трех странных кварков. Он был открыт сначала на бумаге, то есть расчетным образом, с использованием идей кваркового строения барионов. Были предсказаны все основные свойства этой частицы, подтвержденные затем экспериментами.

Многие экспериментально наблюденные факты убедительно говорят сейчас о существовании кварков. В частности, речь идет и об открытии нового процесса в реакции соударения электронов и позитронов, приводящей к образованию кварк-антикварковых струй. Схема этого процесса показана на рис. 4. Эксперимент выполнен на коллайдерах в Германии и США. На рисунке показаны стрелками направления пучков e + и e - , а из точки их столкновения вылет кварка q и антикварка $\tilde q$ под зенитным углом $\Theta$ к направлению полета e + и e - . Такое рождение $q+\tilde q$ пары происходит в реакции

$$e^+ + e^- \to \gamma_{вирт} \to q + \tilde q$$

Как мы уже говорили, жгут силовых линий (чаще говорят струна) при достаточно большом растяжении рвется на составляющие.
При большой энергии кварка и антикварка, как говорилось ранее, струна рвется во многих местах, в результате чего в обоих направлениях вдоль линии полета кварка q и антикварка образуются два узких пучка вторичных бесцветных частиц, как это показано на рис. 4. Такие пучки частиц названы струями. Достаточно часто на опыте наблюдается образование трех, четырех и более струй частиц одновременно.

В экспериментах, которые проводились при сверхускорительных энергиях в космических лучах, в которых принимал участие и автор этой статьи, получены как бы фотографии процесса образования многих струй. Дело в том, что жгут или струна одномерны и поэтому центры образования трех, четырех и более струй также располагаются вдоль прямой линии .

Теория, описывающая сильные взаимодействия, называется квантовой хромодинамикой или сокращенно КХД . Она гораздо сложнее теории электрослабых взаимодействий. Особенно успешно КХД описывает так называемые жесткие процессы, то есть процессы взаимодействия частиц с большой передачей импульса между частицами. Хотя создание теории еще не завершено, многие физики-теоретики уже сейчас заняты созданием "великого объединения" - объединения квантовой хромодинамики и теории электрослабого взаимодействия в единую теорию.

В заключение кратко остановимся на том, исчерпывают ли шесть лептонов и 18 разноцветных кварков (и их античастицы), а также кванты фундаментальных полей - фотон, W ± -, Z 0 -бозоны, восемь глюонов и, наконец, кванты гравитационного поля - гравитоны весь арсенал истинно элементарных, точнее, фундаментальных частиц. По-видимому, нет. Скорее всего, описанные картины частиц и полей суть отражение лишь наших знаний в настоящее время. Недаром уже сейчас есть много теоретических идей, в которые вводятся большая группа еще на наблюденных так называемых суперсимметричных частиц, октет сверхтяжелых кварков и многое другое.

Очевидно, современная физика еще далека от построения завершенной теории частиц. Возможно, был прав великий физик Альберт Эйнштейн, полагая, что лишь учет гравитации, несмотря на ее сейчас кажущуюся малую роль в микромире, позволит построить строгую теорию частиц. Но все это уже в XXI веке или еще позже.

Литература

1. Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1988.

2. Кобзарев И.Ю. Лауреаты Нобелевской премии 1979 г.: С. Вайнберг, Ш. Глэшоу, А. Салам // Природа. 1980. N 1. С. 84.

3. Зельдович Я.Б. Классификация элементарных частиц и кварки в изложении для пешеходов // Успехи физ. наук. 1965. Т. 8. С. 303.

4. Крайнов В.П. Соотношение неопределенности для энергии и времени // Соросовский Образовательный Журнал. 1998. N 5. С. 77-82.

5. Намбу И. Почему нет свободных кварков // Успехи физ. наук. 1978. Т. 124. С. 146.

6. Жданов Г.Б., Максименко В.М., Славатинский С.А. Эксперимент "Памир" // Природа. 1984. N 11. С. 24

Рецензент статьи Л.И. Сарычева

С. А. Славатинский Московский физико-технический институт, Долгопрудный Московской обл.

Интересная статья

Недавно физикам, наблюдавшим за очередным экспериментом, проходившем в Большом адронном коллайдере, наконец-то удалось найти следы бозона Хиггса, или, как его называют многие журналисты, "божественной частицы". Это значит, что постройка коллайдера себя полностью оправдала - ведь его сделали именно для того, чтобы поймать этот неуловимый бозон.


Физики, работающие на Большом адронном коллайдере с помощью детектора CMS впервые зафиксировали рождение двух Z-бозонов - один из типов событий, которые могут быть свидетельством существования "тяжелого" варианта бозона Хиггса. Если быть совсем точным, то 10 октября детектор CMS впервые обнаружил появление четырех мюонов. Предварительные результаты реконструкции позволили ученым интерпретировать это событие как кандидата в рождение двух нейтральных калибровочных Z-бозонов.

Думаю, сейчас нам следует немножко отвлечься и поговорить о том, что такое эти мюоны, бозоны и прочие элементарные частицы. Согласно стандартной модели квантовой механики весь мир состоит из различных элементарных частиц, которые, контактируя друг с другом, порождают все известные типы массы и энергии.

Все вещество, например, состоит из 12 фундаментальных частиц-фермионов: 6 лептонов, таких как электрон, мюон, тау-лептон, и три сорта нейтрино и 6 кварков (u, d, s, c, b, t), которые можно объединить в три поколения фермионов. Фермионы - это частицы, которые могут находиться в свободном состоянии, а кварки - нет, они входят в состав других частиц, например хорошо известных всем протонов и нейтронов.
При этом каждая из частиц участвует в определенном типе взаимодействий, которых, как мы помним, всего четыре: электромагнитное, слабое (взаимодействие частиц при β-распаде ядра атомов), сильное (оно как бы скрепляет атомное ядро) и гравитационное. Последнее, результатом которого является, например, земное притяжение, стандартной моделью не рассматривается, поскольку гравитон (частица, обеспечивающая его) до сих пор не найден.

С остальными типами все проще - частицы, которые в них участвуют, физики знают "в лицо". Так, например, кварки участвуют в сильных, слабых и электромагнитных взаимодействиях; заряженные лептоны (электрон, мюон, тау-лептон) - в слабых и электромагнитных; нейтрино - только в слабых взаимодействиях.

Однако кроме этих "массовых" частиц есть еще и так называемые виртуальные частицы, некоторые из которых (например, фотон) вообще не обладают массой. Честно говоря, виртуальные частицы - это в большей степени математическое явление, чем физическая реальность, поскольку их до сих пор никто никогда не "видел". Однако в разных экспериментах физики могут заметить следы их существования, поскольку оно, увы, весьма недолговечно.

Что же это за такие интересные частички? Они рождаются только в момент какого-нибудь взаимодействия (из описанных выше), после чего либо распадаются, либо поглощаются какой-нибудь из фундаментальных частиц. Считается, что они как бы "переносят" взаимодействие, то есть, контактируя с фундаментальными частицами, изменяют их характеристики, благодаря чему взаимодействие, собственно говоря, и происходит.

Так, например, при электромагнитных взаимодействиях, которые изучены лучше всего, электроны постоянно поглощают и испускают виртуальные безмассовые частицы фотоны, в результате чего свойства самих электронов несколько изменяются и они становятся способными на такие подвиги, как, например, направленное движение (то есть электрический ток), или "перескок" на другой энергетический уровень (как это происходит при фотосинтезе у растений). Так же виртуальные частицы работают и при других типах взаимодействий.

Современной физике кроме фотона известны также еще два типа виртуальных частиц, получивших название бозонов и глюонов. Для нас сейчас особенно интересны бозоны - считается, что при всех взаимодействиях фундаментальные частицы постоянно обмениваются ими и тем самым оказывают воздействие друг на друга. Сами бозоны при этом считаются безмассовыми частицами, хотя некоторые эксперименты показывают, что это не совсем так - W- и Z-бозоны могут получать массу на короткое время.

Одним из самых таинственных бозонов является тот самый бозон Хиггса, для обнаружения следов которого, собственно говоря, и был построен Большой адронный коллайдер. Считается, что эта загадочная частица является одной из самых распространенных и важных бозонов во Вселенной.

Еще в 1960-е годы английский профессор Питер Хиггс предложил гипотезу, согласно которой все вещество, имеющееся во Вселенной, создано при взаимодействии различных частиц с некоей исходной первоосновой (получившейся в результате Большого взрыва), которую позже назвали в честь него. Он выдвинул предположение, что Вселенная пронизана незримым полем, проходя сквозь которое некоторые элементарные частицы "обрастают" некоторыми бозонами, обретая тем самым массу, другие же, например фотоны, остаются не обремененными весом.

Ученые сейчас рассматривают две возможности - существование "легкого" и "тяжелого" вариантов. "Легкий" Хиггс с массой от 135 до 200 гигаэлектронвольт должен распадается на пары W-бозонов, а если масса бозона составляет 200 гигаэлектронвольт или больше, то на пары Z-бозонов, которые, в свою очередь, порождают пары электронов или мюонов.

Получается, что таинственный бозон Хиггса является как бы "творцом" всего во Вселенной. Может быть, именно поэтому нобелевский лауреат Леон Ледерман как-то раз назвал его "частицей-богом". Но в средствах массовой информации это высказывание несколько исказили, и оно стало звучать как "частица Бога" или "божественная частица".

Как же можно получить следы присутствия "частицы-бога"? Считается, что бозон Хиггса может образовываться в ходе столкновений протонов с нейтрино в ускорительном кольце коллайдера. При этом, как мы помним, он должен сразу же распадаться на ряд других частиц (в частности, Z-бозонов), которые могут быть зарегистрированы.

Правда, сами Z-бозоны детекторы зафиксировать не могут из-за чрезвычайно короткого времени жизни этих элементарных частиц (около 3×10-25 секунды), однако они могут "поймать" мюоны, в которые превращаются Z-бозоны.

Напомню, что мюон - неустойчивая элементарная частица с отрицательным электрическим зарядом и спином ½. В обычных атомах он не встречается, до этого его находили лишь в космических лучах, имеющих скорости, близкие к скорости света. Время жизни мюона весьма невелико - он существует лишь 2,2 микросекунды, а потом распадается на электрон, электронное антинейтрино и мюонное нейтрино.

Искусственным способом мюоны можно получить, столкнув на больших скоростях протон и нейтрино. Однако долгое время не удавалось добиться подобных скоростей. Это удалось сделать лишь при постройке Большого адронного коллайдера.

И вот наконец первые результаты были получены. При эксперименте, который прошел 10 октября нынешнего года, в результате столкновения протона с нейтрино было зафиксировано рождение четырех мюонов. Это доказывает то, что появление двух нейтральных калибровочных Z-бозонов имело место быть (они всегда проявляются при подобных событиях). А значит, существование бозона Хиггса - это не миф, а реальность.

Правда, ученые отмечают, что само по себе это событие не обязательно указывает на рождение бозона Хиггса, поскольку к появлению четырех мюонов могут вести и другие события. Однако это первое из событий такого типа, которые в конце концов могут выдать хиггсовскую частицу. Чтобы с уверенностью говорить о существовании бозона Хиггса в том или ином диапазоне масс, необходимо накопить значительное число подобных событий и проанализировать, как распределены массы рождающихся частиц.

Однако, что ни говори, первый шаг к доказательству существования "частицы-бога" уже сделан. Возможно, дальнейшие эксперименты смогут дать еще больше информации о загадочном бозоне Хиггса. Если ученые смогут наконец-то "поймать" его, то у них получится воссоздать условия, существовавшие 13 миллиардов лет назад после Большого взрыва, то есть те, при которых зарождалась наша Вселенная.

Единицы измерения физических величин при описании явлений, происходящих в микромире, подразделяются на основные и производные, которые определяются через математическую запись законов физики.
В связи с тем, что все физические явления происходят в пространстве и времени, за основные единицы принимают в первую очередь единицы длины и времени, к ним присоединяется единица массы. Основные единицы: длины l , времени t, массы m − получают определенную размерность. Размерности производных единиц определяются формулами, выражающими определенные физические законы.
Размеры основных физических единиц подбирают так, чтобы на практике было удобно ими пользоваться.
В системе СИ приняты следующие размерности: длины [l ] = м (метр), времени [t] = с (секунда), массы [т] = кг (килограмм).
В системе СГС для основных единиц приняты следующие размерности: длины [/] = см (сантиметр), времени [t] = с (секунда) и массы [т] = г (грамм). Для описания явлений, происходящих в микромире, можно использовать обе системы единиц СИ и СГС.
Оценим порядки величин длины, времени и массы в явлениях микромира.
Кроме общепринятых международных систем единиц СИ и СГС используются также "естественные системы единиц", опирающиеся на универсальные физические константы. Эти системы единиц особенно уместны и используются в различных физических теориях. В естественной системе единиц за основные единицы приняты фундаментальные постоянные: скорость света в вакууме − с, постоянная Планка − ћ, гравитационная постоянная G N , постоянная Больцмана − k: число Авогадро − N A , и др. В естественной системе единиц Планка принято с = ћ = G N = k = 1. Этой системой единиц пользуются в космологии для описания процессов, в которых одновременно существенны квантовые и гравитационные эффекты (теории Черных дыр, теории ранней Вселенной).
В естественной системе единиц решена проблема естественной единицы длины. Таковой можно считать комптоновскую длину волны λ 0 , которая определяется массой частицы М: λ 0 = ћ/Мс.
Длина характеризует размер объекта. Так, для электрона классический радиус r 0 = e 2 /m e c 2 = 2.81794·10 -13 см (е, m е − заряд и масса электрона). Классический радиус электрона имеет смысл радиуса заряженного шара с зарядом е (распределение сферически симметрично), при котором энергия электростатического поля шара ε = γе 2 /r 0 равна энергии покоя электрона m e c 2 (используется при рассмотрении томпсоновского рассеяния света).
Используется также радиус боровской орбиты. Он определяется как расстояние от ядра, на котором с наибольшей вероятностью можно обнаружить электрон в невозбужденном атоме водорода
a 0 = ћ 2 /m e e 2 (в СГС-системе) и a 0 = (α/4π)R = 0.529·10 -10 м (в СИ-системе), α = 1/137.
Размер нуклона r ≈ 10 -13 см (1 фемтометр). Характерные размеры атомных систем − 10 -8 , ядерных систем − 10 -12 ÷ 10 -13 см.
Время
изменяется в широком интервале и определяется как отношение расстояния R к скорости объекта v. Для микрообъектов τ яд = R/v = 5·10 -12 см/10 9 см/с ~ 5·10 -22 с;
τ элем ч = 10 -13 см/3·10 10 см/с = 3·10 -24 с.
Массы объектов изменяются от 0 до М. Так, масса электрона m е ≈ 10 -27 г, масса протона
m р ≈ 10 -24 г (СГС-система). Одна атомная единица массы, использующаяся в атомной и ядерной физике, 1 а.е.м. = М(С)/12 в единицах массы атома углерода.
К фундаментальным характеристикам микрообъектов следует отнести электрический заряд, а также характеристики, необходимые для идентификации элементарной частицы.
Электрический заряд частиц Q измеряется обычно в единицах заряда электрона. Заряд электрона е = 1.6·10 -19 кулон. Для частиц в свободном состоянии Q/e = ±1, 0, а для кварков, входящих в состав адронов, Q/e = ±2/3 и ±1/3.
В ядрах заряд определяется количеством протонов Z, содержащихся в ядре. Заряд протона по абсолютной величине равен заряду электрона.
Для идентификации элементарной частицы необходимо знать:
I − изотопический спин;
J − собственный момент количества движения − спин;
Р − пространственную четность;
С − зарядовую четность;
G − G-четность.
Эти сведения записываются в виде формулы I G (J PC).
Спин − одна из важнейших характеристик частицы, для измерения которой используется фундаментальная константа Планка h или ћ = h/2π = 1.0544·10 -27 [эрг-с]. Бозоны имеют целый спин в единицах ћ: (0,1, 2,...)ћ, фермионы − полуцелый (1/2, 3/2,.. .)ћ. В классе суперсимметричных частиц значения спинов фермионов и бозонов меняются местами.

Рис. 4 иллюстрирует физический смысл спина J по аналогии с классическим представлением о моменте количества движения частицы с массой m = 1 г, движущейся со скоростью v = 1 см/с по окружности с радиусом r = 1 см. В классической физике момент количества движения J = mvr = L (L − орбитальный момент). В квантовой механике J = = 10 27 ћ = 1 эрг·с для тех же параметров движущегося по окружности объекта, где ћ = 1.05·10 -27 эрг·с.
Проекция спина элементарной частицы на направление ее импульса называется спиральностью. Спиральность безмассовой частицы с произвольным спином принимает только два значения: по или против направления импульса частицы. Для фотона возможные значения спиральности равны ±1, для безмассового нейтрино спиральность равна ±1/2.
Спиновый момент количества движения атомного ядра определяется как векторная сумма спинов элементарных частиц, образующих квантовую систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Орбитальный момент ||, и спиновый момент || приобретают дискретное значение. Орбитальный момент || = ћ[l (l +1)] 1/2 , где l − орбитальное квантовое число (может принимать значения 0, 1,2,...), собственный момент количества движения || = ћ 1/2 где s − спиновое квантовое число (может принимать нулевые, целые или полуцелые значенияJ, полный момент количества движения равен сумме + = .
К производным единицам следует отнести: энергию частицы, быстроту, заменяющую скорость для релятивистских частиц, магнитный момент и др.
Энергия покоящейся частицы: Е = mc 2 ; движущейся частицы: Е = m 2 c 4 + p 2 c 2 .
Для нерелятивистских частиц: Е = mс 2 + р 2 /2m; для релятивистских частиц, с массой m = 0: Е = ср.
Единицы измерения энергии − эВ, кэВ, МэВ, ГэВ, ТэВ, ... 1 ГэВ = 10 9 эВ, 1 ТэВ = 10 12 эВ,
1 эВ = 1.6·10 -12 эрг.
Скорость частицы β = v/c, где с = 3·10 10 см/с − скорость света. Скорость частицы определяет такую важнейшую характеристику как Лоренц-фактор частицы γ = 1/(1-β 2) 1/2 = E/mc 2 . Всегда γ > 1- Для нерелятивистских частиц 1 < γ < 2, а для релятивистских частиц γ > 2.
В физике высоких энергий скорость частицы β близка к 1 и для релятивистских частиц ее трудно определить. Поэтому вместо скорости используется быстрота y, которая связана со скоростью соотношением у = (1/2)ln[(1+β)/(1-β)] = (1/2)ln[(E+p)/(E-p)]. Быстрота изменяется от 0 до ∞.

Функциональная связь между скоростью частицы и быстротой показана на рис. 5. Для релятивистских частиц при β → 1, Е → р, тогда вместо быстроты можно использовать псевдобыстроту η, которая определяется углом вылета частицы θ, η = (1/2)ln tan(θ/2). В отличие от скорости быстрота − аддитивная величина, т.е. у 2 = y 0 + y 1 для любой системы отсчета и для любых релятивистских и нерелятивистских частиц.
Магнитный момент μ = Iπr 2 /c, где ток I = ev/2πr, возникает из-за вращения электрического заряда. Таким образом, любая заряженная частица имеет магнитный момент. При рассмотрении магнитного момента электрона используется магнетон Бора
μ B = eћ/2m e c = 0.5788·10 -14 МэВ/Гс, магнитный момент электрона = g·μ B ·. Коэффициент g называется гиромагнитным отношением. Для электрона g = /μ B · = 2, т.к. J = ћ/2, = μ B при условии, что электрон − точечная бесструктурная частица. Гиромагнитное отношение g содержит информацию о структуре частицы. Величина (g − 2) измеряется в экспериментах, направленных на изучение структуры частиц, отличных от лептонов. Для лептонов эта величина свидетельствует о роли более высоких электромагнитных поправок (см. далее п. 7.1).
В ядерной физике используется ядерный магнетон μ я = eћ/2m p c, где m p − масса протона.

2.1.1. Система Хэвисайда и ее связь с системой СГС

В системе Хэвисайда скорость света с и постоянная Планка ћ полагаются равными единице, т.е. с = ћ = 1. Основными единицами измерения являются энергетические единицы − МэВ или МэВ -1 , в то время как в системе СГС основные единицы измерения − [г, см, с]. Тогда, воспользовавшись соотношениями: Е = mc 2 = m = МэВ, l = ћ/mc = МэВ -1 , t = ћ/mc 2 = МэВ -1 , получим связь между системой Хэвисайда и системой СГС в виде:
  • m(г) = m(МэВ)·2·10 -27 ,
  • l (см) = l (МэВ -1)·2·10 -11 ,
  • t (с) = t (МэВ -1)·б.б·10 -22 .

Система Хэвисайда применяется в физике высоких энергий для описания явлений, происходящих в микромире, и основана на использовании естественных констант с и ћ, которые являются определяющими в релятивистской и квантовой механике.
Числовые значения соответствующих величин в системе СГС для электрона и протона приводятся в табл. 3 и могут быть использованы для перехода из одной системы в другую.

Таблица 3. Числовые значения величин в системе СГС для электрона и протона

2.1.2. Планковские (естественные) единицы

При рассмотрении гравитационных эффектов для измерения энергии, массы, длины и времени вводится планковская шкала. Если гравитационная энергия объекта равна его полной энергии, т.е.

то
длина = 1.6·10 -33 см,
масса = 2.2 ·10 -5 г = 1.2·10 19 ГэВ,
время = 5.4·10 -44 с,
где = 6.67·10 -8 см 2 ·г -1 ·с -2 .

Гравитационные эффекты существенны, когда гравитационная энергия объекта сравнима с его полной энергией.

2.2. Классификация элементарных частиц

Понятие "элементарная частица" сформировалось с установлением дискретного характера строения вещества на микроскопическом уровне.

Атомы → ядра → нуклоны → партоны (кварки и глюоны)

В современной физике термин "элементарные частицы" употребляется для наименования большой группы мельчайших наблюдаемых частиц материи. Эта группа частиц весьма обширна: протоны р, нейтроны n, π- и K-мезоны, гипероны, очарованные частицы (J/ψ...) и множество резонансов (всего
~ 350 частиц). Эти частицы получили название "адроны".
Выяснилось, что эти частицы не элементарны, а представляют собой составные системы, конституентами которых являются истинно элементарные или, как их стали называть, "фундаментальные " частицы − партоны , открытые при изучении структуры протона. Изучение свойств партонов позволило отождествить их с кварками и глюонами , введенными в рассмотрение Гелл-Манном и Цвейгом при классификации наблюдаемых элементарных частиц. Кварки оказались фермионами со спином J = 1/2. Им были приписаны дробные электрические заряды и барионное число В = 1/3 поскольку барион, у которого В = 1, состоит из трех кварков. Кроме того, для объяснения свойств некоторых барионов возникла необходимость введения нового квантового числа − цвета. Каждый кварк имеет три цветовых состояния, обозначаемые индексами 1, 2, 3 или словами красный (R), зеленый (G) и синий (В). Цвет никак не проявляет себя у наблюдаемых адронов и работает только внутри них.
К настоящему времени открыто 6 ароматов (типов) кварков.
В табл. 4 приведены свойства кварков для одного цветового состояния.

Таблица 4. Свойства кварков

Аромат Масса, МэВ/с 2 I I 3 Q q /e s с b t
u up 330; (5) 1/2 1/2 2/3 0 0 0 0
d down 340; (7) 1/2 -1/2 -1/3 0 0 0 0
s strange 450; (150) 0 0 -1/3 -1 0 0 0
с charm 1500 0 0 2/3 0 1 0 0
b beauty 5000 0 0 -1/3 0 0 -1 0
t truth 174000 0 0 2/3 0 0 0 1

Для каждого аромата кварка указаны его масса (приводятся массы конституентных кварков и в скобках массы токовых кварков), изотопический спин I и 3-я проекция изотопического спина I 3 , заряд кварка Q q /e и квантовые числа s, с, b, t. Наряду с этими квантовыми числами часто используется квантовое число гиперзаряд Y = В + s + с + b+ t. Существует связь между проекцией изотопического спина I 3 , электрического заряда Q и гиперзаряда Y: Q = I 3 + (1/2)Y.
Поскольку каждый кварк имеет 3 цвета, в рассмотрении должны участвовать 18 кварков. Кварки не имеют структуры.
Вместе с тем, среди элементарных частиц оказался целый класс частиц, получивших название "лептоны ". Они также являются фундаментальными частицами, т.е. не имеют структуры. Их шесть: три заряженных е, μ, τ и три нейтральных ν e , ν μ , ν τ . Лептоны участвуют только в электромагнитных и слабых взаимодействиях. Лептоны и кварки с полуцелым спином J = (n+1/2)ћ, n = 0, 1,... . относятся к фундаментальным фермионам. Наблюдается удивительная симметрия между лептонами и кварками: шесть лептонов и шесть кварков.
В табл. 5 приведены свойства фундаментальных фермионов: электрический заряд Q i в единицах заряда электрона и масса частиц m. Лептоны и кварки объединяются в три поколения (I, II и III). Для каждого поколения сумма электрических зарядов ∑Q i = 0 с учетом 3 цветовых зарядов у каждого кварка. Каждому фермиону сответствует антифермион.
Кроме характеристик частиц, указанных в таблице, важную роль для лептонов играют лептонные числа: электронное L e , равное +1 для е - и ν e , мюонное L μ , равное +1 для μ - и ν μ и таонное L τ , равное +1 для τ - и ν τ , которые соответствуют ароматам лептонов, участвующих в конкретных реакциях, и являются сохраняющимися величинами. Для лептонов барионное число В = 0.

Таблица 5. Свойства фундаментальных фермионов

Окружающее нас вещество состоит из фермионов первого поколения ненулевой массы. Влияние частиц второго и третьего поколений проявилось в ранней Вселенной. Среди фундаментальных частиц особую роль играют фундаментальные калибровочные бозоны, имеющие целочисленное внутреннее квантовое число спин J = nћ, n = 0, 1, .... Калибровочные бозоны ответственны за четыре типа фундаментальных взаимодействий: сильное (глюон g), электромагнитное (фотон γ), слабое (бозоны W ± , Z 0), гравитационное (гравитон G). Они также являются бесструктурными, фундаментальными частицами.
В табл. 6 приведены свойства фундаментальных бозонов, являющихся полевыми квантами в калибровочных теориях.

Таблица 6. Свойства фундаментальных бозонов

Название Заряд Масса Спин Взаимодействия
Гравитон, G 0 0 2 Гравитационное
Фотон, γ 0 < 3·10 -27 эВ 1 Электромагнитное
Заряженные векторные бозоны, W ± ±1 80.419 ГэВ/с 2 1 Слабое
Нейтральный векторный бозон, Z 0 0 91.188 ГэВ/с 2 1 Слабое
Глюоны, g 1 , ... , g 8 0 0 0 Сильное
Хиггсы, Н 0 , H ± 0 > 100 ГэВ/с 2 0

Помимо свойств открытых калибровочных бозонов γ, W ± , Z 0 , g 1 ,... , g 8 в таблице показаны свойства неоткрытых пока бозонов: гравитона G и Хиггс-бозонов Н 0 , H ± .
Рассмотрим теперь наиболее многочисленную группу элементарных сильновзаимодействующих частиц − адронов, для объяснения структуры которых было введено представление о кварках.
Адроны подразделяются на мезоны и барионы. Мезоны построены из кварка и антикварка (q). Барионы состоят из трех кварков (q 1 q 2 q 3).
В табл. 7 приводится перечень свойств основных адронов. (Подробные таблицы см. The European Physical Journal C, Rev. of Particle Phys., v.15, №1 - 4, 2000.)

Таблица 7. Свойства адронов

Название Масса, МэВ/с 2 Время жизни, с Моды распада Кварковый состав
Пион π ±
1 - (0 -+) π 0
139.567 134.965

2.6·10 -8
0.83·10 -16

π ± → μ ± + ν
π 0 → γ + γ
(u), (d)
(u − d)/√2
η-мезон η 0
0 + (0 -+)
548.8 Г=1.18±0.11 кэВ η 0 → γ + γ; 3π 0
→π + + π -0 + π --
с 1 (u + d) + c 2 (s)
(u), (s)
(d)
(d)
D ±
D 0
1869.3
1864.5
10.69·10 -13
4.28·10 -13

D ± → е ± + X
D 0 → е + + X -

(c), (d)
(c)
F ± = 1969.3 4.36·10 -13 → ρ 0 + π ± (c, s)
B ±
В 0
5277.6 5279.4 13.1·10 -13
13.1·10 -13
B ± → + π ±
В 0 →+ π -0 +
(u), (b)
(d), (b)
б Протон р
Нейтрон n
938.3
939.5
> 10 33 лет
898 ±16

n → р + е - +
uud
udd
Λ 2.63·10 -10 Λ→p + π - uds
Σ +
Σ 0
Σ -
1189.4
1192
1197
0.8·10 -10
5.8·10 -20
1.48·10 -10
Σ + →p + π 0
Σ 0 → Λ+ γ
Σ - →n + π -
uus
uds
dds
Ξ 0
Ξ -
1314.9
1321
2.9·10 -10
1.64·10 -10
Ξ 0 → Λ+ π 0
Ξ - → Λ + π -
uss
dss
Ω - 1672 0.8·10 -10 Ω - → Λ+ K - sss
Σ с
Σ с →+ π
→Ξ - π + π +
l - l
ucs
usc
dsc
udb

Кварковая структура адронов позволяет выделить в этой многочисленной группе частиц нестранные адроны, которые состоят из нестранных кварков (и, d), странные адроны, в состав которых входит странный кварк s, чармированные адроны, содержащие с-кварк, прелестные адроны (боттом-адроны) с b-кварком.
В таблице представлены свойства только незначительной части адронов: мезонов и барионов. Показаны их масса, время жизни, основные моды распада и кварковый состав. Для мезонов барионное число В = О и лептонное число L = 0. Для барионов барионное число В = 1, лептон-ное число L = 0. Мезоны относятся к бозонам (целый спин), барионы − к фермионам (спин полуцелый).
Дальнейшее рассмотрение свойств адронов позволяет объединить их в изотопические мультиплеты, состоящие из частиц с одинаковыми квантовыми числами (барионным числом, спином, внутренней четностью, странностью) и близкими по значению массами, но с различными электрическими зарядами. Каждый изотопический мультиплет характеризуется изотопическим спином I, который определяет полное число частиц, входящих в мультиплет, равное 2I + 1. Изоспин может принимать значения 0, 1/2, 1, 3/2, 2, . .., т.е. возможно существование изотопических синглетов, дублетов, триплетов, квартетов и т.д. Так, протон и нейтрон составляют изотопический дублет, π + -, π - -, π 0 -мезоны рассматриваются как изотопический триплет.
Более сложными объектами в микромире являются атомные ядра. Атомное ядро состоит из Z протонов и N нейтронов. Сумма Z + N = А − число нуклонов в данном изотопе. Часто в таблицах приводится усредненная по всем изотопам величина, тогда она становится дробной. Известны ядра, для которых указанные величины находятся в пределах: 1 < А < 289, 1 < Z < 116.
Перечисленные выше частицы рассматриваются в рамках Стандартной Модели. Предполагается, что за пределами Стандартной Модели может существовать еще одна группа фундаментальных частиц − суперсимметричные частицы (SUSY). Они должны обеспечить симметрию между фермионами и бозонами. В табл. 8 приводятся предполагаемые свойства этой симметрии.

2.3. Полевой подход к проблеме взаимодействий

2.3.1 Свойства фундаментальных взаимодействий

Огромное многообразие физических явлений, происходящих при столкновениях элементарных частиц, определяется всего лишь четырьмя типами взаимодействий: электромагнитным, слабым, сильным и гравитационным. В квантовой теории взаимодействие описывается в терминах обмена специфическими квантами (бозонами), ассоциированными с данным типом взаимодействия.
Для наглядного представления взаимодействия частиц американский физик Р. Фейнман предложил использовать диаграммы, которые получили его имя. Диаграммы Фейнмана описывают любой процесс взаимодействия при столкновении двух частиц. Каждая частица, участвующая в процессе, на диаграмме Фейнмана изображается линией. Свободный левый или правый конец линии обозначает нахождение частицы в начальном или конечном состоянии соответственно. Внутренние линии на диаграммах (т.е. линии, не имеющие свободных концов) соответствуют так называемым виртуальным частицам. Это частицы, рождающиеся и поглощающиеся в процессе взаимодействия. Их нельзя зарегистрировать, в отличие от реальных частиц. Взаимодействие частиц на диаграмме изображается узлами (или вершинами). Тип взаимодействия характеризуется константой связи α которая может быть записана в виде: α = g 2 /ћc, где g − заряд источника взаимодействия, а является основной количественнои характеристикой силы, действующей между частицами. В электромагнитном взаимодействии α е = e 2 /ћc = 1/137.


Рис.6. Диаграмма Фейнмана.

Процесс a + b →с + d в виде диаграммы Фейнмана (рис. 6) выглядит следующим образом: R − виртуальная частица, которой обмениваются частицы а и b при взаимодействии, определяемом константой взаимодействия α = g 2 /ћc, характеризующей силу взаимодействия на расстоянии, равном радиусу взаимодействия.
Виртуальная частица может иметь массу М х и при обмене этой частицей происходит передача 4-импульса t = −q 2 = Q 2 .
В табл. 9 представлены характеристики разных типов взаимодействий.

Электромагнитные взаимодействия . Наиболее полно и последовательно изучены электромагнитные взаимодействия, которым подвержены все заряженные частицы и фотоны. Переносчиком взаимодействия является фотон. Для электромагнитных сил константа взаимодействия численно равна постоянной тонкой структуры α е = e 2 /ћc = 1/137.
Примерами простейших электромагнитных процессов являются фотоэффект, комптон-эффект, образование электрон-позитронных пар, а для заряженных частиц − ионизационное рассеяние и тормозное излучение. Теория этих взаимодействий − квантовая электродинамика − является наиболее точной физической теорией.

Слабые взаимодействия. Впервые слабые взаимодействия наблюдались при β-распаде атомных ядер. И, как оказалось, эти распады связаны с превращениями протона в нейтрон в ядре и обратно:
р → n + е + + ν e , n → р + е - + e . Возможны и обратные реакции: захват электрона е - + р → n + ν e или антинейтрино e + р → е + + n. Слабое взаимодействие было описано Энрико Ферми в 1934 г. в терминах четырехфермионного контактного взаимодействия, определяемого константой Ферми
G F = 1.4·10 -49 эрг·см 3 .
При очень высоких энергиях вместо фермиевского контактного взаимодействия слабое взаимодействие описывается как обменное, при котором осуществляется обмен квантом, наделенным слабым зарядом g w (по аналогии с электрическим зарядом) и действующим между фермионами. Такие кванты были впервые обнаружены в 1983 г. на SppS-коллайдере (ЦЕРН) коллективом под руководством Карла Руббиа. Это заряженные бозоны − W ± и нейтральный бозон − Z 0 , их массы соответственно равны: m W± = 80 ГэВ/с 2 и m Z = 90 ГэВ/с 2 . Константа взаимодействия α W в этом случае выражается через константу Ферми:

Таблица 9. Основные типы взаимодействий и их характеристики