Про психологию. Учения и методики

Внутреннее строение сплавов. Строение металлов

Еталлы, как и все окружающие нас тела, состоят из отдельных невидимых даже в самый сильный микро­скоп частиц, называемых атомами. Но атомы в свою очередь построены из ещё более мелких частиц: протонов, электронов и нейтронов. Протоны и электроны имеют электрические заряды: протон - положительный заряд, а электрон - отрицательный, нейтрон же не имеет никакого электрического заряда.

Если два протона «находятся близко, они отталкива­ются друг от друга, так как они заряжены одноимённым электричеством. Так же ведут себя и два электрона. На­против, протон и электрон притягиваются друг к другу, причём силы взаимного притяжения протона и электрона равны между собой, т. е. протон обладает элементарным электрическим зарядом, равным заряду электрона.

Атом в нормальном состоянии, т. е. когда он содержит одинаковое количество протонов и электронов, не обла­дает электрическим зарядом. Но бывают такие состояния атома, когда он приобретает или теряет электроны. Тогда атом становится электрически заряженным. При избытке электронов атом заряжен отрицательным электричеством, а при нехватке электронов он заряжен положительным электричеством. Вот такие атомы, в которых имеется из­быток или недостаток электронов, называются ионами.

Как же располагаются элементарные частицы в атоме?

В настоящее время считают, что атом построен следую­щим образом. Протоны и нейтроны составляют ядро, на­ходящееся в центре атома. Вокруг ядра обращаются электроны, которые образуют электронную обо­лочку атома. В каждом атоме количество электронов равно количеству протонов.

Электроны в электронной оболочке расположены слоями. В каждом слое может поместиться лишь опреде* лённое количество электронов. Первый слой, окружающий непосредственно ядро, может вместить лишь два элект­рона, второй слой - 8, третий - от 8 до 18 электронов. Каждый новый слой электронов при переходе от одного атома к другому образуется обычно после заполнения близлежащего к ядру внутреннего слоя.

Например, ядро атома натрия, как установлено, имеет 11 протонов, а его 11 электронов распределены в трёх оболочках: в первой - 2, во второй - 8 и в третьей -

1 электрон. Ядро атома рубидия содержит 37 протонов и окружено 37 электронами, котс^рые расположены в пяти оболочках: в первой - 2, во второй - 8, в третьей-18, в четвёртой - 8, в пятой - 1 электрон. Ещё более слож­ное строение имеет атом урана. Его ядро содержит 92 про­тона, а в электронной оболочке имеется 92 электрона.

Протон и нейтрон почти одинаковы по весу, а электрон почти в 1840 раз легче протона. Значит, основная масса атома содержится в его ядре. Чем большее количество нейтронов и протонов содержится в ядре, тем больший вес имеет атом.

Вес атома, например, в граммах выражать очень не­удобно: потребовалось бы писать десятки нулей после за­пятой. Поэтому ввели понятие об относительном весе ато­мов, об атомном весе. Вначале за единицу был при­нят атомный вес водорода; с ним сравнивали атомные веса всех других элементов.

Стройную систему химических элементов создал вели­кий русский химик Д. И. Менделеев в 1869 году, на основе открытого им периодического закона.

Сущность закона Менделеева состоит в том, что все химические элементы, расположенные один за другим в порядке возрастания атомных весов, образуют ряд, в ко­тором химические свойства элементов через определённое количество элементов периодически повторяются.

Д. И. Менделеев расположил химические элементы в своей таблице так, что элементы, помещённые в одних и тех же вертикальных столбцах, обладают сходными хими­ческими свойствами. Зная место элемента в таблице, мож­но определить большинство химических свойств элемента и его соединений. Каждый химический элемент в таблице Менделеева имеет порядковый номер. Его теперь называют числом Менделеева. Этот номер указывает число протонов в ядре. В одни и те же вертикаль­ные столбцы таблицы попадают атомы с одинаковым числом электронов во внешней оболочке.

В зависимости от числа электронов во внешней оболоч­ке меняются химические и физические свойства элемента.

Атомы одного и того же элемента, отличающиеся друг от друга лишь числом нейтронов в ядре, называются изо­топами. «Изотоп» - греческое слово. Оно обозначает «занимающий одно и то же место». Изотопы каждого эле­мента располагаются в одной и той же клетке таблицы Менделеева, поскольку заряд ядра (количество прогонов) у изотопов одного и того же элемента одинаков. Металлы в отличие от жидких и газообразных тел в обычных усло­виях являются кристаллическими телами. Кристалл - это правильная фигура, ограниченная пло­скими поверхностями.

Внутреннее строение кристаллов в настоящее время изучено довольно хорошо с помощью рентгеновских лу­чей. Освещая ими кристаллы, получают рентгенограмму, т. е. картину на фотопластинке, по которой определяют расположение атомов в кристаллической решётке и рас­стояния между ними. Рентгенограммы показали, что ионы металлов «укладываются» в кристалле примерно так же, как располагаются в ящике твёрдые шары.

Атомы разных металлов образуют неодинаковые кри­сталлические решётки. Чаще всего встречаются три типа решёток.

Первый тип - кубическая объёмноцентрированная ре­шётка (рис. 1). Атомы металла в такой решётке нахо­дятся в вершинах и центре куба. Каждый атом окружён

Восемью атомами. Такую решётку имеют металлы вана­дий, вольфрам, молибден, литий, хром и другие.

Второй тип решётки - кубическая гранецентрирован - иая (рис. 2). Атомы металла в ней расположены по вер­шинам граней куба. Такой решёткой обладают, напри­мер, алюминий, свинец, золото, серебро, никель, торий.

Третий тип - гексагональная (шестиугольная) плотно упакованная решётка (рис. 3). Она встречается у цинка, магния, кадмия, бериллия.

На рис. 1-3 атомы условно изображены в виде ша­риков. В зависимости от типа решётки атомы занимают в ней больше или меньше места. Например, в кубической объёмноцентрированной решётке атомы занимают 68% пространства, а в кубической гранецентрированной-74%.

Расположение атомов в кристаллической решётке ока­зывает большое влияние на свойства металла.

У некоторых металлов кристаллическая решётка может перестраиваться из одного типа в другой. Например, чис­тое железо при температурах ниже 910° имеет кубическую
объёмноцентрированную решётку, а выше 910° решётка становится гранецентрированной. Свойством изменять кри­сталлическую решётку обладают и такие металлы, как олово, уран, титан, таллий, цирконий, лантан, церий.

Свойство веществ образовывать решётки разной фор­мы называют аллотропией; в переводе с греческого

Языка это слово означает «другой поворот», «другое свой­ство». Общеизвестна аллотропия у кристаллического углерода. Он может находиться в виде графита и в виде алмаза. Графит и алмаз построены из атомов углерода; отличие их только в строении кристаллической решётки. А какая огромная разница в свойствах! Графит - мягкий,

Непрозрачный минерал чёрного цвега, алмаз, напротив, прозрачен, бесцветен и твёрд.

Атомы в кристаллической решётке металлов располо­жены столь близко друг к другу, что их внешние элект­роны имеют возможность двигаться не только вокруг одного атома, а вокруг многих атомов. Следовательно, внешние электроны, распределяющиеся в металле равно­мерно, свободно перемещаются по всему куску металла, образуя своеобразный электронный газ.

Таким образом, любой металл представляет собой решётку из правильно располо­женных положительных ионов, заполнен­ную электронным газом. Высокая прочность ме­таллов и объясняется наличием электронного газа, кото­рый обволакивает все ионы, превращая металлический кристалл как бы в одно целое.

Ионы, находящиеся в определённых местах (узлах) кри­сталлической решётки, могут совершать, однако, движе­ние - колебание. В ненагретом металле колебания ионов замедлены, в нагретом - ионы испытывают сильное коле­бание. Чем выше температура, тем сильнее раскачи­ваются ионы. Наконец, наступает момент, когда силы взаимодействия уже не могут удержать ионы в узлах кристаллической решетки и она разрушается; металл из твёрдого состояния переходит в жидкое. Это и есть тем­пература плавления.

Если два расплавленных металла тщательно переме­шать, то после затвердевания получится сплав этих ме­таллов. Сплавы получаются и при сплавлении металла с неметаллом, например железа с углеродом, алюминия с кремнием и т. д. Свойства полученного сплава зависят не только от того, какие элементы входят в сплав, но и от внутреннего строения, или, как говорят, структуры сплава. Сплав является тоже кристаллическим телом.

Строение сплавов может быть различно. Составные части сплава могут образовать либо механическую смесь, либо твёрдый раствор, либо химиче­ское соединение. Но есть сплавы, в которых име­ются одновременно и механические смеси, и твёрдые рас­творы, и химические соединения.

Механическая смесь получается в том случае, когда составные части не взаимодействуют химически, а нахо­дятся в сплаве в виде самостоятельных мелких кристал­

Ликов. Их можно наблюдать при рассматривании отпо­лированной поверхности в микроскоп. Механические смеси образуются, например, при сплавлении свинца с сурьмой, висмута с кадмием и др.

Каждый знает раствор сахара или поваренной соли в иоде. Растворяя сахар или поваренную соль в воде, можно получить однородное вещество - жидкий раствор. В ста­кане воды можно растворить различное количество сахара

Оказывается, что подобные однородные системы переменного состава образуются и в твёрдых телах. Их называют твёрдыми растворами. В них атомы растворённого вещества и раство­рителя «рассеяны», перемешаны между собой. В кристаллической решётке вещества, являющегося растворителем, некоторые его атомы замещаются атомами растворённого вещества (рис. 4). Такие растворы называются твёр­дыми растворами замеще­ния. Их образуют при сплавле­нии, например, металлы медь и никель, железо и хром, зо­лото и медь, серебро и золото, медь и платина и др.

Замещение одних атомов другими в кристаллической решётке происходит в том случае, если атомы растворяе­мого металла близки по своим размерам атомам раство* рителя. Если разница в размерах атомов превышает 15%, твёрдый раствор замещения образоваться не может.

При очень большой разнице в размерах атомов обра­зуются твёрдые растворы внедрения. Они чаще всего получаются тогда, когда металл растворяет в себе неметаллические элементы, атомы которых значительно меньше атомов металла. Самым распространённым спла­вом, построенным по типу твёрдых растворов внедрения, является сплав железа с углеродом; этот сплав назы­вается сталью. При образовании твёрдого раствора внедрения атомы внедряющегося элемента располагаются
в промежутках кристаллической решётки между атомами растворителя. Кристаллическая решётка твёрдого рас­твора внедрения показана на рис. 5.

А много ли можно растворить одного металла в дру­гом? Неограниченная растворимость присуща далеко не всем металлам. В меди, например, может раствориться сколько угодно никеля, точно так же и в никеле можно растворить любое количество меди. Растворителем счи­тают тот металл, которого больше в сплаве по весу.

Многие металлы обладают ограниченной раст­воримостью. Например, в алюминии можно раство­рить не более 5,5% меди по весу. При большем количе­стве медь находится в спла­ве в виде отдельных нераст - ворённых частиц. Чем выше температура твёрдого раст­вора, тем больше меди мож­но растворить в алюминии (но не более 5,5%).При ох­лаждении этого сплава медь выделяется в виде мельчай­ших, очень твёрдых и хруп­ких частиц.

Какова природа этих ча­стиц? Оказывается - это не чистая медь, а её х и м и ч е - ское соединение с алюминием. Избыток меди в сплаве взаимодействует с алюминием химически. Кристаллики любого химического соединения в сплаве имеют вполне определённый состав. Так, например, при образовании химических соединений: железа с углеродом, называемого карбидом железа, три атома железа химически связаны с одним атомом углерода; алюминия с медью-два атома алюминия сое­динены с одним атомом меди. Для образования карбидов вольфрама или ванадия нужно, чтобы соотношение ато­мов этих металлов и атомов углерода было равно 1: 1, а в карбиде хрома 23 атома хрома взаимодействуют с ше­стью атомами углерода.

Кристаллические решётки химических соединений очень сложны. При сильном разогревании сплава кри­сталлы химических соединений могут растворяться в твёр-

Дом растворе сплава, а при снижении температуры нагре­вания образовываться вновь.

Сплавы, применяемые в технике, имеют сложный хи­мический состав. Высокопрочные стали, например, имеют в своем составе до десятка различных химических эле­ментов. Чем сложнее состав и строение сплава, тем раз­нообразнее его свойства.

Редкие металлы, вводимые в состав сталей и сплавов, улучшают их качество, коренным образом изменяют пер­воначальные свойства сплавов, так как они часто обра­зуют кристаллы химических соединений, упрочняющих твёрдый раствор.

Металлурги пользуются редкими металлами для того, чтобы выплавленные стали и сплавы были более прочны, более твёрды, обладали нужной пластичностью, упруго­стью, жароупорностью, химической" стойкостью и т. д. О том, какие это свойства и как они изменяются при до­бавке редких металлов, будет рассказано ниже.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Внутреннее строение металлов и сплавов

1. Атомное строение металлов

2. Полиморфизм. Анизотропия

3. Строение реальных кристаллов и дефекты кристаллической решетки

1 . Атомное строение металлов

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место.

Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике.

Причина этого - в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Металлы - один из классов конструкционных материалов, характеризующийся определенным набором свойств:

· «металлический блеск» (хорошая отражательная способность);

· пластичность;

· высокая теплопроводность;

· высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком - периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка - элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

Рис.1.1. Схема кристаллической решетки

размеры ребер элементарной ячейки. a, b, c - периоды решетки - расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

углы между осями ().

координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

плотность упаковки атомов в кристаллической решетке - объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки - 0,68, для гранецентрированной кубической решетки - 0,74)

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

Рис. 1.2. Основные типы кристаллических решеток: а - объемно-центрированная кубическая; б- гранецентрированная кубическая; в - гексагональная плотноупакованная

примитивный - узлы решетки совпадают с вершинами элементарных ячеек;

базоцентрированный - атомы занимают вершины ячеек и два места в противоположных гранях;

объемно-центрированный - атомы занимают вершины ячеек и ее центр;

гранецентрированный - атомы занимают вершины ячейки и центры всех шести граней

Основными типами кристаллических решеток являются:

1. Объемно-центрированная кубическая (ОЦК) (см. рис.1.2а), атомы располагаются в вершинах куба и в его центре (V, W, Ti,)

2. Гранецентрированная кубическая (ГЦК) (см. рис. 1.2б), атомы располагаются в вершинах куба и по центру каждой из 6 граней (Ag, Au,)

3. Гексагональная, в основании которой лежит шестиугольник:

o простая - атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);

o плотноупакованная (ГПУ) - имеется 3 дополнительных атома в средней плоскости (цинк).

2 . Полиморфизм. Анизотропия

металл кристаллический атомный полиморфизм

Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями между ними. В аморфных телах с хаотическим расположением атомов в пространстве расстояния между атомами в различных направлениях равны, следовательно, свойства будут одинаковые, то есть аморфные тела изотропны.

В кристаллических телах атомы правильно располагаются в пространстве, причем по разным направлениям расстояния между атомами неодинаковы, что предопределяет существенные различия в силах взаимодействия между ними и, в конечном результате, разные свойства. Зависимость свойств от направления называется анизотропией

Чтобы понять явление анизотропии необходимо выделить кристаллографические плоскости и кристаллографические направления в кристалле.

Плоскость, проходящая через узлы кристаллической решетки, называется кристаллографической плоскостью.

Прямая, проходящая через узлы кристаллической решетки, называется кристаллографическим направлением.

Для обозначения кристаллографических плоскостей и направлений пользуются индексами Миллера. Чтобы установить индексы Миллера, элементарную ячейку вписывают в пространственную систему координат (оси X,Y, Z - кристаллографические оси). За единицу измерения принимается период решетки.

Рис.1.3. Примеры обозначения кристаллографических плоскостей (а) и кристаллографических направлений (б)

Для определения индексов кристаллографической кристалло-графической плоскости необходимо:

установить координаты точек пересечения плоскости с осями координат в единицах периода решетки;

взять обратные значения этих величин;

привести их к наименьшему целому кратному, каждому из полученных чисел.

Полученные значения простых целых чисел, не имеющие общего множителя, являются индексами Миллера для плоскости, указываются в круглых скобках. Примеры обозначения кристаллографических плоскостей на рис. 1.3 а.

Другими словами, индекс по оси показывает на сколько частей плоскость делит осевую единицу по данной оси. Плоскости,параллельные оси, имеют по ней индекс 0 (110)

Ориентация прямой определяется координатами двух точек. Для определения индексов кристаллографического направления необходимо:

одну точку направления совместить с началом координат;

установить координаты любой другой точки, лежащей на прямой, в единицах периода решетки

привести отношение этих координат к отношению трех наименьших целых чисел.

Индексы кристаллографических направлений указываются в квадратных скобкаж

В кубической решетке индексы направления, перпендикулярного плоскости (hkl) имеют те же индексы .

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом.

Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: - ОЦК - ;

ОЦК - ; (высокотемпературное)

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких - алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

3 . Строение реальных кристаллов и дефекты кристаллической решетки

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами. Они имеют неправильную форму и различно ориентированы в пространстве. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается. В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

· точечные - малые во всех трех измерениях;

· линейные - малые в двух измерениях и сколь угодно протяженные в третьем;

· поверхностные - малые в одном измерении.

Точеные дефекты

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)

Рис.2.1. Точечные дефекты

Вакансия - отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д.), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом - это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация - это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Простейшие виды дислокаций - краевые и винтовые.

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

Неполная плоскость называется экстраплоскостью.

Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.

Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рис. 2.3).

Если экстраплоскость находится в верхней части кристалла, то краевая дислокация - положительная (), если в нижней, то - отрицательная (). Дислокации одного знака отталкиваются, а противоположные притягиваются.

Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рис. 2.4) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла. Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался. Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.

Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки - левая.

Рис. 2.4. Механизм образования винтовой дислокации

Винтовая дислокация не связана с какой-либо плоскостью скольжения, она может перемещаться по любой плоскости, проходящей через линию дислокации. Вакансии и дислоцированные атомы к винтовой дислокации не стекают.

В процессе кристаллизации атомы вещества, выпадающие из пара или раствора, легко присоединяются к ступеньке, что приводит к спиральному механизму роста кристалла.

Линии дислокаций не могут обрываться внутри кристалла, они должны либо быть замкнутыми, образуя петлю, либо разветвляться на несколько дислокаций, либо выходить на поверхность кристалла.

Дислокационная структура материала характеризуется плотностью дислокаций.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м 2 , или как суммарная длина линий дислокаций в объеме 1 м 3

(см -2 ; м -2)

Плотность дислокаций изменяется в широких пределах и зависит от состояния материала. После тщательного отжига плотность дислокаций составляет 10 5 …10 7 м -2 , в кристаллах с сильно деформированной кристаллической решеткой плотность дислокаций достигает 10 15 …10 16 м -2 .

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рис. 2.5)

Рис. 2.5. Влияние плотности дислокаций на прочность

Минимальная прочность определяется критической плотностью дислокаций

Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение. В настоящее время созданы кристаллы без дефектов - нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм - “усы“ с прочностью, близкой к теоретической: для железа = 13000 МПа, для меди =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 10 15 …10 16 м -2 . В противном случае образуются трещины.

Дислокации влияют не только на прочность и пластичность, но и на другие свойства кристаллов. С увеличением плотности дислокаций возрастает внутреннее, изменяются оптические свойства, повышается электросопротивление металла. Дислокации увеличивают среднюю скорость диффузии в кристалле, ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.

Дислокации образуются при образовании кристаллов из расплава или газообразной фазы, при срастании блоков с малыми углами разориентировки. При перемещении вакансий внутри кристалла, они концентрируются, образуя полости в виде дисков. Если такие диски велики, то энергетически выгодно “захлопывание” их с образованием по краю диска краевой дислокации. Образуются дислокации при деформации, в процессе кристаллизации, при термической обработке.

Поверхностные дефекты- границы зерен, фрагментов и блоков (рис. 2.6).

Рис. 2.6. Разориентация зерен и блоков в металле

Размеры зерен составляют до 1000 мкм. Углы разориентации составляют до нескольких десятков градусов ().

Граница между зернами представляет собой тонкую в 5 - 10 атомных диаметров поверхностную зону с максимальным нарушением порядка в расположении атомов.

Строение переходного слоя способствует скоплению в нем дислокаций. На границах зерен повышена концентрация примесей, которые понижают поверхностную энергию. Однако и внутри зерна никогда не наблюдается идеального строения кристаллической решетки. Имеются участки, разориентированные один относительно другого на несколько градусов (). Эти участки называются фрагментами. Процесс деления зерен на фрагменты называется фрагментацией или полигонизацией.

В свою очередь каждый фрагмент состоит из блоков, размерами менее 10 мкм, разориентированных на угол менее одного градуса (). Такую структуру называют блочной или мозаичной.

Размещено на Allbest.ru

Подобные документы

    Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат , добавлен 30.07.2014

    Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция , добавлен 08.08.2009

    Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

    презентация , добавлен 29.09.2013

    Точечные дефекты в кристаллической решетке реальных металлов: вакансии, дислоцированные атомы и примеси. Образование линейных дефектов (дислокаций). Роль винтовой дислокации в формировании растущего кристалла. Влияние плотности дислокаций на прочность.

    презентация , добавлен 14.10.2013

    Характеристика химических и физических свойств металлов. Отношение металлов к окислителям - простым веществам. Физический смысл внутреннего трения материалов. Примеры применения метода внутреннего трения в металловедении. Поиск динамического модуля.

    курсовая работа , добавлен 30.10.2014

    Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа , добавлен 03.07.2015

    Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

    презентация , добавлен 19.02.2015

    Классификация металлов по основному компоненту, по температуре плавления. Характерные признаки, отличающие металлы от неметаллов: внешний блеск, высокая прочность. Характерные особенности черных и цветных металлов. Анализ сплавов цветных металлов.

    контрольная работа , добавлен 04.08.2012

    Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие , добавлен 29.01.2011

    Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.

У веществ в твердом состоянии строение кристаллическое или аморфное. В кристаллическом веществе атомы расположены по геометрически правильной схеме и на определенном расстоянии друг от друга, в аморфном же (стекле, канифоли) атомы расположены беспорядочно.

У всех металлов и их сплавов строение кристаллическое. На рис.12 показана структура чистого железа. Кристаллические зерна неопределенной формы не похожи на типичные кристаллы - многогранники, поэтому их называюткристаллитами, зернами или гранулами . Однако строение кристаллитов столь же закономерно, как и у развитых кристаллов.

Рис.12 . Микроструктура чистого железа (х - 150)

Виды кристаллических решеток . При затвердевании атомы металлов образуют геометрически правильные системы, называемыекристаллическими решетками . Порядок расположения атомов в решетке может быть различным. Многие важнейшие металлы образуют решетки, простейшие (элементарные) ячейки которых представляют форму центрированного куба (- и- железо, хром, молибден, вольфрам, ванадий, марганец), куба с центрированными гранями (- железо, алюминий, медь, никель, свинец) или гексагональную, как у шестигранной призмы, ячейку (магний, цинк,- титан,- кобальт).

Элементарная ячейка повторяется непрерывно в трех измерениях, образуя кристаллическую решетку, поэтому положение атомов в элементарной ячейке определяет структуру всего кристалла.

Элементарная ячейка центрированного куба (рис.13 ) состоит из девяти атомов, из которых восемь расположены по вершинам куба, а девятый - в его центре.

Рис.13. Элементарная ячейкаРис.14. Часть пространственной решет-

центрированного куба ки центрированного куба

Для характеристики кристаллической решетки (атомной структуры кристалла) применяют пространственную решетку , которая является геометрической схемой кристаллической решетки и состоит из точек (узлов), закономерно расположенных в пространств.

Рис.15. Элементарная ячейка кубаРис.16. Часть пространственной ре-

с центрированными гранями шетки куба с центрированными

На рис. 14 приведена часть пространственной решетки центрированного куба. Здесь взяты восемь смежных элементарных ячеек; узлы, расположенные по вершинам и в центре каждой ячейки, отмечены кружками. Элементарная ячейка куба с центрированными гранями (рис.15 ) состоит из 14 атомов, из них 8 атомов расположены по вершинам - куба и 6 атомов - по граням.

На рис.16 приведена часть пространственной решетки куба с центрированными гранями (гранецентрированного куба). На схеме имеется восемь элементарных ячеек; узлы расположены по вершинам и по центрам граней каждой ячейки. Гексагональная ячейка (рис.17 ) состоит из 17 атомов, из них 12 атомов расположены по вершинам шестигранной призмы, 2 атома - в центре оснований и 3 атома - внутри призмы. Для измерения расстояния между атомами кристаллических решеток пользуются специальной единицей, называемойангстремом см.

Рис.17. Гексагональная ячейка

Параметр решеток (сторона или шестигранника) у меди 3,6 А, а у алюминия 4,05 А, у цинка 2,67 А и т. д.

Каждый атом состоит из положительно заряженного ядра и нескольких слоев (оболочек) отрицательно заряженных и движущихся вокруг ядра электронов. Электроны внешних оболочек атомов металлов, называемые валентными , легко отщепляются, быстро движутся между ядрами и называютсясвободными . Вследствие наличия свободных электронов атомы металлов являются положительно заряженными ионами.

Таким образом, в узлах решеток, обозначенных кружками рис.14 и16 , находятся положительно заряженные ионы. Ионы, однако, не находятся в покое, а непрерывно колеблются положения равновесия. С повышением температуры амплитуда колебаний увеличивается, что вызывает расширение кристаллов, а при температуре плавления колебания частиц усиливаются настолько, что кристаллическая решетка разрушается.

Во всех кристаллах наблюдаются небольшие отклонения от идеальной решетки - незанятые узлы и различного рода смещения атомов.

Анизотропность и спайность кристаллов . В отдельных кристаллах свойства различны в разных направлениях. Если взять большой кристалл (существуют лабораторные и даже производственные методы выращивания крупных кристаллов) вырезать из него несколько одинаковых по размеру, но различно ориентированных образцов, и испытать их свойства, то иногда наблюдается весьма значительная разница в свойствах между отдельными образцами. Например, при испытании образцов, вырезанных из кристалла меди, относительное удлинение изменялось в пределах от 10 - 50 %, а предел прочности-от 14 до 35 кГ/мм 2 для различных образцов. Это свойство кристаллов называютанизотропностью . Анизотропность кристаллов объясняется особенностями расположения атомов в пространстве.

Следствием анизотропности кристаллов является спайность , которая выявляется при разрушении. В местах излома кристаллов можно наблюдать правильные плоскости, указывающие на смещение частиц под влиянием внешних сил не беспорядочное, а правильными рядами, в определенном направлении, соответственно расположению частиц в кристалле. Эти плоскости называютсяплоскостями спайности .

Аморфные тела изотропны, т. е. все их свойства одинаковы во всех направлениях. Излом аморфного тела всегда имеет неправильную искривленную, так называемую, раковистую поверхность.

Металлы, затвердевшие в обычных условиях, состоят не из одного кристалла, а из множества отдельных кристаллитов, различно ориентированных друг к другу, поэтому свойства литого металла приблизительно одинаковы во всех направлениях; это явление называют квазиизотропностью (кажущейся изотропностью).

Аллотропия металлов (или полиморфизм) - их свойство перестраивать решетку при определенных температурах в процессе нагревания или охлаждения. Аллотропию обнаруживают все элементы, меняющие валентность при изменении температуры: например, железо, марганец, никель, олово и др. Каждое аллотропическое превращение происходит при определенной температуре. Например, одно из превращений железа происходит при температуре 910°С, ниже которой атомы составляют решетку центрированного куба (см.рис.14 ), а выше - решетку гранецентрированного куба (см.рис.16 ).

Та или иная структура называется аллотропической формой или модификацией. Различные модификации обозначают греческими буквами , , и т. д., причем буквойобозначают модификацию, существующую при температурах ниже первого аллотропического превращения. Аллотропические превращения сопровождаются отдачей (уменьшением) или поглощением (увеличением) энергии.

Кристаллизация металлов . Кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое (первичная кристаллизация ). Перекристаллизацию из одной модификации в другую при остывании эатвердевшего металла называют (вторичной кристаллизацией ). Процесс кристаллизации металла легче всего проследить с помощью счетчика времени и термоэлектрического пирометра, который представляет собой милливольтметр, подключенный к термопаре. Термопару (две разнородные проволоки спаянные концами) погружают в расплавленный металл. Возникающий при этом термоток пропорционален температуре металла и стрелка милливольтметра отклоняется, указывая эту температуру по градуированной шкале.

Показания пирометра автоматически записываются во времени и по полученным данным строят кривые охлаждения в координатах «температура - время» (такие кривые вычерчивает самописец).

Температура, соответствующая какому-либо превращению в металле, называется критической точкой .

На рис.18, а приведена кривая нагрева металла. Здесь точка а - начало плавления, точкаb - окончание плавления.

Рис.18. Кривые нагревания (а ) и охлаждения (б - без петли,

в - с петлей) металла

Участок а b указывает на неизменность температуры во времени при продолжающемся нагревании. Это показывает, что тепловая энергия затрачивается на внутреннее превращение в металле, в данном случае. на превращение твердого металла в жидкий (скрытая теплота плавления).

Переход из жидкого состояния в твердое при охлаждении сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить несколько ниже температуры плавления. Поэтому площадка на кривой охлаждения (рис.19,6 ) находится несколько нижеt пл при температуре переохлажденияt пр .

У некоторых металлов переохлаждение (t пл - t пр ) может оказаться весьма значительным (например, у сурьмы до 40°С) и при температуре переохлажденияt пр (рис. 18 , в ) сразу бурно начинается кристаллизация, в результате чего температура скачком повышается почти доt пл . В этом случае на графике вычерчивается петля теплового гистерезиса.

При затвердевании и при аллотропическом превращении в металле вначале возникают зародыши кристалла (центры кристаллизации), вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку.

Таким образом, процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов.

У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу и точки их соприкосновения определяют границы кристаллитов (зерен).

Кристаллизация железа . Рассмотрим в качестве примера кристаллизацию и критические точки железа.

Рис.19 . Кривые охлаждения и нагревания железа

На рис.19 приведены кривые охлаждения и нагревания чистого железа, которое плавится при температуре 1539 0 С. Наличие критических точек при меньших температурах указывает на аллотропические превращения в твердом железе.

Критические точки обозначаются буквой А , при нагревании обозначаютА c и при охлажденииAr индексы 2, 3, 4 служат для отличия аллотропических превращений (индекс 1 обозначает превращение на диаграмме состоянияFe - Fe 3 C .

При температурах ниже 768 0 С железо магнитно и имеет кристаллическую решетку центрированного куба. Эту модификацию называют-железо ; при нагревании она в точкеАс 2 переходит в немагнитную модификацию-железо . Кристаллическая структура при этом не меняется.

В точке Ас 3 при температуре 910 0 С-железо переходит в-железо с кристаллической решеткой гранецентрированного куба.

В точке Ас 4 при температуре 1401 0 С-железо переходит в-железо , причем кристаллическая решетка вновь перестраивается из гранецентрированного куба в центрированный куб.

При охлаждении происходят те же переходы, только в обратной последовательности.

Из перечисленных превращений наибольшее практическое значение имеют превращения А 3 как при нагреве (Ас 3 ), так и при охлаждении (А r 3 ).

Превращение в точке А 3 сопровождается изменением объема, так как плотность кристаллической решетки-железа больше плотности решетки-железа , в точкеАс 3 объем уменьшается, в точкеAr 3 - увеличивается.

Большинство сплавов получают сплавлением компонентов в жидком состоянии. Компоненты, из которых состоят сплавы, в твердом состоянии могут по-разному взаимодействовать друг с другом, образуя механические смеси, твердые растворы и химические соединения.

Механическая смесь двух компонентов образуется тогда, когда они в твердом состоянии не растворяются друг в друге и не вступают в химическое взаимодействие. Сплавы – механические смеси (например, свинец–сурьма, олово–цинк) неоднородны по своей структуре и представляют смесь кристаллов данных компонентов. При этом кристаллы каждого компонента в сплаве полностью сохраняют свои индивидуальные свойства. Вот почему свойства таких сплавов (например, электросопротивление, твердость и др.) определяются как среднее арифметическое от величины свойств обоих компонентов.

Сплавы – твердые растворы характеризуются образованием общей пространственной кристаллической решетки атомами основного металла-растворителя и атомами растворимого элемента. Структура таких сплавов состоит из однородных кристаллических зерен, подобно чистому металлу. Существуют твердые растворы замещения (медноникелевые, железохромистые и др. сплавы) и твердые растворы внедрения (например, раствор железа и углерода) (рис. 5).

Сплавы - твердые растворы являются самыми распространенными. Их свойства отличаются от свойств составляющих компонентов. Так, например, твердость и электросопротивление у твердых растворов значительно выше, чем у чистых компонентов. Благодаря высокой пластичности они хорошо поддаются ковке и другим видам обработки давлением. Обрабатываемость резанием у твердых растворов низкие.

Химические соединения, подобно твердым растворам, являются однородными сплавами. Важной особенностью их является то, что при затвердевании образуется совершенно новая кристаллическая решетка, отличная от решеток составляющих сплав компонентов. Поэтому свойства химического соединения самостоятельны и не зависят от свойств компонентов. Химические соединения образуются при строго определенном количественном соотношении сплавляемых компонентов. Состав сплава химического соединения выражается химической формулой. Эти сплавы обладают обычно высоким электросопротивлением, большой твердостью, малой пластичностью. Так, химическое соединение железа с углеродом – цементит (Fe 3 C) тверже чистого железа в 10 раз.

Кристаллизация сплавов

Сплавы имеют более сложную структуру, чем простые металлы. В связи с этим процессы кристаллизации сплавов протекают значительно сложнее, чем металлов.

Сплавы в отличие от чистых металлов при затвердевании или плавлении имеют не одну, а две критические точки – температуры, при которых в металлах или сплавах происходят какие-либо превращения (рис. 6).

Для облегчения изучения сплавов их объединяют в системы.

К системам относятся все те сплавы, которые состоят из одних и тех же компонентов и отличающиеся друг от друга лишь количественным соотношением этих компонентов, т. е. концентрацией. Так, например, к системе сплавов свинец–сурьма относятся все сплавы, состоящие из свинца и сурьмы и отличающиеся друг от друга лишь количественным составом этих компонентов.

Количество сплавов одной системы, но разной концентрации настолько велико, что изучать по кривым охлаждения или нагревания все превращения, происходящие в каждом из них, практически невозможно, да и нерационально. Для изучения состояния сплавов выбранной системы в зависимости от температуры и концентрации строят диаграмму состояния.

Внутреннее строение металлов и сплавов

Все твердые тела делятся на аморфные и кристаллические. В аморфных телах атомы расположены хаотично, т. е. в беспорядке, без всякой системы (например, стекло, клей, воск, канифоль и др.). Все металлы и сплавы имеют кристаллическое строение, т. е. атомы расположены в строго определенном порядке, с определенной геометрической закономерностью. (К кристаллическим телам относятся также поваренная соль, кварц, сахарный песок и др.)

Если атомы металла мысленно соединить прямыми линиями, то получится правильная геометрическая система, называемая пространственной кристаллической решеткой. Из кристаллической решетки можно выделить элементарную кристаллическую ячейку, представляющую наименьший комплекс атомов, повторением которого в трех измерениях можно построить всю решетку.

Наиболее распространены три типа элементарных кристаллических ячеек металлов (рис. 3): кубическая объемноцентрированная (хром, вольфрам, молибден, железо (до 910° и от 1400 до 1539°С), титан (при температурах свыше 882°С)), кубическая гранецентрированная (алюминий, медь, никель, свинец, золото, серебро, железо (при 910–1400°С)) и гексагональная (цинк, магний, бериллий, титан (до 882°С)).

Атомы металлов образуют кристаллические решетки благодаря наличию особой металлической связи. В узлах кристаллических решеток металлов расположены положительно заряженные ионы, удерживаемые на определенном расстоянии друг от друга свободными электронами. Такое внутреннее строение обусловливает характерные признаки металлов, такие, как электро- и теплопроводность, пластичность. Свойства металлов зависят не только от типа кристаллической решетки, но и от расстояния между атомами.

Геометрическая правильность расположения атомов в кристаллических решетках придает металлам особенности, которых нет у аморфных тел.

Первой особенностью металлов является анизотропия свойств кристаллов, т. е. различие свойств кристаллов в разных направлениях. Анизотропия объясняется неодинаковой плотностью атомов в разных плоскостях кристаллической решетки, так как расстояния между атомами в решетках в разных направлениях неодинаковы. В отличие от кристаллических тел аморфные тела изотропны, т. е. их свойства не зависят от направления.

У металлических тел анизотропия свойств не выражена так резко, как у отдельных кристаллов. Металлы являются поликристаллическими телами, т. е. они состоят не из одного, а из бесчисленного множества кристаллов, по-разному ориентированных. Произвольность ориентировки каждого кристалла приводит к тому, что в любом направлении располагается приблизительно одинаковое количество различно ориентированных кристаллов. В результате получается, что свойства поликристаллических тел будут в среднем одинаковы во всех направлениях. Это явление называется квазиизотропией (ложной изотропией).



Второй особенностью металлов как тел кристаллического строения является наличие у них плоскостей скольжения (спайности). По этим плоскостям происходит сдвиг или отрыв (разрушение) частиц кристаллов под действием внешних усилий. У аморфных тел смещение частиц происходит не по определенным плоскостям, а беспорядочно. Излом аморфного тела всегда имеет неправильную, искривленную форму.

Третьей особенностью металлов как тел кристаллического строения является то, что процесс перехода их из твердого состояния в жидкое и наоборот происходит при определенной температуре, называемой температурой плавления (затвердевания). Аморфные тела переходят в жидкое состояние постепенно и не имеют определенной температуры плавления.