Про психологию. Учения и методики

Химические свойства железа таблица. Соединения железа

Железо было известно еще в доисторические времена, однако широкое применение нашло значительно позже, так как в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определенном уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Железом, о чем свидетельствуют его названия на языках древних народов: древнеегипетское "бени-пет" означает "небесное железо"; древнегреческое sideros связывают с латинским sidus (род. падеж sideris) - звезда, небесное тело. В хеттских текстах 14 века до н. э. упоминается о Железе как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, франц. fer, итал. ferro).

Способ получения Железа из руд был изобретен в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Железа распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришел железный век. Гомер (в 23-й песне "Илиады") рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Железо получали по сыродутному процессу. Железную руду восстанавливали древесным углем в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из нее выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Железа науглероживалась, то есть получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна "чушка", "свинское железо" - англ. pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причем такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 веках кричный способ был уже широко распространен.

В 14 веке чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь ("домницу"), а затем и в доменную печь. В середине 18 века в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии еще в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлической шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 века стал развиваться пудлинговый процесс передела чугуна в Железо на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 веков, изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Железе и его сплавах. Однако все существовавшие способы производства Железа не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 века, когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 веке возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространение Железа в природе. По содержанию в литосфере (4,65% по массе) Железо занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Железо принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Железо - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Железо накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Железа играют окислительно-восстановительные реакции - переход 2-валентного Железа в 3-валентное и обратно. В биосфере при наличии органических веществ Fe 3+ восстанавливается до Fe 2+ и легко мигрирует, а при встрече с кислородом воздуха Fe 2+ окисляется, образуя скопления гидрооксидов 3-валентного Железа. Широко распространенные соединения 3-валентного Железа имеют красный, желтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование -"красноцветная формация" (красные и бурые суглинки и глины, желтые пески и т. д.).

Физические свойства Железа. Значение Железа в современное технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддается прокатке, штамповке и волочению. Способность растворять углерод и других элементы служит основой для получения разнообразных железных сплавов.

Железо может существовать в виде двух кристаллических решеток: α- и γ-объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910°С устойчиво α-Fe с ОЦК-решеткой (а = 2,86645Å при 20 °С). Между 910 °С и 1400°С устойчива γ-модификация с ГЦК-решеткой (а = 3,64Å). Выше 1400°С вновь образуется ОЦК-решетка δ-Fe (a = 2,94Å), устойчивая до температуры плавления (1539 °С). α-Fe ферромагнитно вплоть до 769 °С (точка Кюри). Модификации γ-Fe и δ-Fe парамагнитны.

Полиморфные превращения Железа и стали при нагревании и охлаждении открыл в 1868 году Д. К. Чернов. Углерод образует с Железом твердые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77Å), размещаются в междоузлиях кристаллической решетки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26 Å). Твердый раствор углерода в γ-Fe называется аустенитом, а в α-Fe - ферритом. Насыщенный твердый раствор углерода в γ-Fe содержит 2,0% С по массе при 1130 °С; α-Fe растворяет всего 0,02- 0,04% С при 723 °С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твердый раствор углерода в α-Fe, очень твердый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твердости и пластичности.

Физические свойства Железа зависят от его чистоты. В промышленных железных материалах Железу, как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает так называемых красноломкость, фосфор (даже 10 -2 % Р) - хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Железа (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Железа, относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26Å

Ионные радиусы Fe 2+ 0,80Å, Fe 3+ 0.67Å

Плотность (20°C) 7 ,874 г/см 3

t кип около 3200°С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт/(м·K)

Теплоемкость Железа зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоемкость (0-1000°С) 640,57 дж/(кг·К) .

Удельное электрическое сопротивление (20°С) 9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления (0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м 2 (19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга 4·10 -6

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв 170-210 Мн/м 2

Относительное удлинение 45-55%

Твердость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Химические свойства Железа. Конфигурация внешней электронной оболочки атома 3d 6 4s 2 . Железо проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Железа). С кислородом Железо образует оксид (II) FeO, оксид (III) Fe 2 O 3 и оксид (II,III) Fe 3 O 4 (соединение FeO c Fe 2 O 3 , имеющее структуру шпинели). Во влажном воздухе при обычной температуре Железо покрывается рыхлой ржавчиной (Fe 2 O 3 ·nH 2 O). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Железа. При нагревании Железа в сухом воздухе выше 200 °С оно покрывается тончайшей оксидной пленкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Железа - воронения. При нагревании в водяном паре Железо окисляется с образованием Fe 3 O 4 (ниже 570 °С) или FeO (выше 570 °С) и выделением водорода.

Гидрооксид Fe(OH) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей Fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом Fe(OH) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурый гидрооксид Fe(OH) 3 . Оксид FeO проявляет основные свойства. Оксид Fe 2 O 3 амфотерен и обладает слабо выраженной кислотной функцией; реагируя с более основными оксидами (например, с MgO, она образует ферриты - соединения типа Fe 2 O 3 ·nMeO, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Железа, существующего в виде ферратов, например K 2 FeO 4 , солей не выделенной в свободном состоянии железной кислоты.

Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl 2 и FeCl 3 . При нагревании Железа с серой образуются сульфиды FeS и FeS 2 . Карбиды Железа - Fe 3 C (цементит) и Fe 2 C (е-карбид) - выпадают из твердых растворов углерода в Железе при охлаждении. Fe 3 C выделяется также из растворов углерода в жидком Железе при высоких концентрациях С. Азот, подобно углероду, дает с Железом твердые растворы внедрения; из них выделяются нитриды Fe 4 N и Fe 2 N. С водородом Железо дает лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Железо энергично реагирует с кремнием и фосфором, образуя силициды (например, Fe 3 Si и фосфиды (например, Fe 3 P).

Соединения Железа с многими элементами (О, S и другими), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в оксиде Железа (II) часть ионов Fe 2+ в узлах решетки замещена ионами Fe 3+ ; для сохранения электронейтральности некоторые узлы решетки, принадлежавшие ионам Fe 2+ , остаются пустыми.

Нормальный электродный потенциал Железа в водных растворах его солей для реакции Fe = Fe 2+ + 2e составляет -0,44 в, а для реакции Fe = Fe 3+ + 3e равен -0,036 в. Таким образом, в ряду активностей Железо стоит левее водорода. Оно легко растворяется в разбавленных кислотах с выделением Н 2 и образованием ионов Fe 2+ . Своеобразно взаимодействие Железа с азотной кислотой. Концентрированная HNO 3 (плотность 1,45 г/см 3) пассивирует Железо вследствие возникновения на его поверхности защитной оксидной пленки; более разбавленная HNO 3 растворяет Железо с образованием ионов Fe 2+ или Fe 3+ , восстанавливаясь до NH 3 или N 2 и N 2 O. Растворы солей 2-валентного Железа на воздухе неустойчивы - Fe 2+ постепенно окисляется до Fe 3+ . Водные растворы солей Железа вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей Fe 3+ тиоцианат-ионов SCN- дает яркую кроваво-красную окраску вследствие возникновения Fe(SCN) 3 что позволяет открывать присутствие 1 части Fe 3+ примерно в 10 6 частях воды. Для Железа характерно образование комплексных соединений.

Получение Железа. Чистое Железо получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Постепенно увеличивается производство достаточно чистого Железо путем его прямого восстановления из рудных концентратов водородом, природным газом или углем при относительно низких температурах.

Применение Железа. Железо - важнейший металл современной техники. В чистом виде Железо из-за его низкой прочности практически не используется, хотя в быту "железными" часто называют стальные или чугунные изделия. Основная масса Железа применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Железа приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железом руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путем окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом S, P, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и других элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Железа особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и другие. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Железа создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Железа и его сплавов постоянно растет.

Железо как художественный материал использовалось с древности в Египте, Месопотамии, Индии. Со времен средневековья сохранились многочисленные высокохудожественные изделия из Железа в странах Европы (Англии, Франции, Италии, России и других) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Железа (часто со слюдяной подкладкой) отличаются плоскостными формами, четким линейно-графическим силуэтом и эффектно просматриваются на световоздушном фоне. В 20 веке Железо используется для изготовления решеток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Железе меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым-0,1 и беременным - 0,3 мг Железа в сутки. У животных потребность в Железе ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг; для поросят - до 200 мг, для супоросных свиней - 60 мг.

Ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после ).

Смотрите так же:

СТРУКТУРА

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а 0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a 0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С -а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С - аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) - д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа - это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая - 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа - хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10 −5 -1·10 −8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe 1-x S) и когенит (Fe 3 C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO) n . В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Железо - один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов - например, никелевых.
Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание) 1/A.07-10
Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.17.1

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.

Первые изделия из железа и его сплавов были найдены при раскопках и датируются примерно 4 тысячелетием до нашей эры. То есть еще древние египтяне и шумеры использовали метеоритные месторождения данного вещества, чтобы изготовлять украшения и предметы быта, а также оружие.

Сегодня соединения железа различного рода, а также чистый металл - это самые распространенные и применяемые вещества. Не зря XX век считался железным. Ведь до появления и широкого распространения пластика и сопутствующих материалов именно это соединение имело для человека решающее значение. Что представляет собой данный элемент и какие вещества образует, рассмотрим в данной статье.

Химический элемент железо

Если рассматривать строение атома, то в первую очередь следует указать его местоположения в периодической системе.

  1. Порядковый номер - 26.
  2. Период - четвертый большой.
  3. Группа восьмая, подгруппа побочная.
  4. Атомный вес - 55,847.
  5. Строение внешней электронной оболочки обозначается формулой 3d 6 4s 2 .
  6. - Fe.
  7. Название - железо, чтение в формуле - "феррум".
  8. В природе существует четыре стабильных изотопа рассматриваемого элемента с массовыми числами 54, 56, 57, 58.

Химический элемент железо имеет также около 20 различных изотопов, которые не отличаются стабильностью. Возможные степени окисления, которые может проявлять данный атом:

Важное значение имеет не только сам элемент, но и его различные соединения и сплавы.

Физические свойства

Как простое вещество, железо имеет с ярко выраженным металлизмом. То есть это серебристо-белый с серым оттенком металл, обладающий высокой степенью ковкости и пластичности и высокой температурой плавления и кипения. Если рассматривать характеристики более подробно, то:

  • температура плавления - 1539 0 С;
  • кипения - 2862 0 С;
  • активность - средняя;
  • тугоплавкость - высокая;
  • проявляет ярко выраженные магнитные свойства.

В зависимости от условий и различных температур, существует несколько модификаций, которые образует железо. Физические свойства их различаются от того, что разнятся кристаллические решетки.


Все модификации имеют различные типы строения кристаллических решеток, а также отличаются магнитными свойствами.

Химические свойства

Как уже упоминалось выше, простое вещество железо проявляет среднюю химическую активность. Однако в мелкодисперсном состоянии способно самовоспламеняться на воздухе, а в чистом кислороде сгорает сам металл.

Коррозионная способность высокая, поэтому сплавы данного вещества покрываются легирующими соединениями. Железо способно взаимодействовать с:

  • кислотами;
  • кислородом (в том числе воздухом);
  • серой;
  • галогенами;
  • при нагревании - с азотом, фосфором, углеродом и кремнием;
  • с солями менее активных металлов, восстанавливая их до простых веществ;
  • с острым водяным паром;
  • с солями железа в степени окисления +3.

Очевидно, что, проявляя такую активность, металл способен образовывать различные соединения, многообразные и полярные по свойствам. Так и происходит. Железо и его соединения чрезвычайно разнообразны и находят применение в самых разных отраслях науки, техники, промышленной деятельности человека.

Распространение в природе

Природные соединения железа встречаются довольно часто, ведь это второй по распространенности элемент на нашей планете после алюминия. При этом в чистом виде металл встречается крайне редко, в составе метеоритов, что говорит о больших его скоплениях именно в космосе. Основная же масса содержится в составе руд, горных пород и минералов.

Если говорить о процентном содержании рассматриваемого элемента в природе, то можно привести следующие цифры.

  1. Ядра планет земной группы - 90%.
  2. В земной коре - 5%.
  3. В мантии Земли - 12%.
  4. В земном ядре - 86%.
  5. В речной воде - 2 мг/л.
  6. В морской и океанской - 0,02 мг/л.

Самые распространенные соединения железа формируют следующие минералы:

  • магнетит;
  • лимонит или бурый железняк;
  • вивианит;
  • пирротин;
  • пирит;
  • сидерит;
  • марказит;
  • леллингит;
  • миспикель;
  • милантерит и прочие.

Это еще далеко список, ведь их действительно очень много. Кроме того, широко распространены различные сплавы, которые создаются человеком. Это тоже такие соединения железа, без которых сложно представить современную жизнь людей. К ним относятся два основных типа:

  • чугуны;
  • стали.

Также именно железо является ценной добавкой в составе многих никелевых сплавов.

Соединения железа (II)

К таковым относятся такие, в которых степень окисления образующего элемента равна +2. Они достаточно многочисленны, ведь к ним можно отнести:

Формулы химических соединений, в которых железо проявляет указанную степень окисления, для каждого класса индивидуальны. Рассмотрим наиболее важные и распространенные из них.

  1. Оксид железа (II). Порошок черного цвета, в воде не растворяется. Характер соединения - основный. Способен быстро окисляться, однако и восстанавливаться до простого вещества может также легко. Растворяется в кислотах, образуя соответствующие соли. Формула - FeO.
  2. Гидроксид железа (II). Представляет собой белый аморфный осадок. Образуется при реакции солей с основаниями (щелочами). Проявляет слабые основные свойства, способен быстро окисляться на воздухе до соединений железа +3. Формула - Fe(OH) 2 .
  3. Соли элемента в указанной степени окисления. Имеют, как правило, бледно-зеленую окраску раствора, хорошо окисляются даже на воздухе, приобретая и переходя в соли железа 3. Растворяются в воде. Примеры соединений: FeCL 2 , FeSO 4 , Fe(NO 3) 2 .

    Практическое значение среди обозначенных веществ имеют несколько соединений. Во-первых, (II). Это главный поставщик ионов в организм человека, больного анемией. Когда такой недуг диагностируется у пациента, то ему прописывают комплексные препараты, в основе которых лежит рассматриваемое соединение. Так происходит восполнение дефицита железа в организме.

    Во-вторых, то есть сульфат железа (II), вместе с медным используется для уничтожения сельскохозяйственных вредителей на посевах. Метод доказывает свою эффективность уже не первый десяток лет, поэтому очень ценится садоводами и огородниками.

    Соль Мора

    Это соединение, которое представляет собой кристаллогидрат сульфата железа и аммония. Формула его записывается, как FeSO 4 *(NH 4) 2 SO 4 *6H 2 O. Одно из соединений железа (II), которое получило широкое применение на практике. Основные области использования человеком следующие.

    1. Фармацевтика.
    2. Научные исследования и лабораторные титриметрические анализы (для определения содержания хрома, перманганата калия, ванадия).
    3. Медицина - как добавка в пищу при нехватке железа в организме пациента.
    4. Для пропитки деревянных изделий, так как соль Мора защищает от процессов гниения.

    Есть и другие области, в которых находит применение это вещество. Название свое оно получило в честь немецкого химика, впервые обнаружившего проявляемые свойства.

    Вещества со степенью окисления железа (III)

    Свойства соединений железа, в которых оно проявляет степень окисления +3, несколько отличны от рассмотренных выше. Так, характер соответствующего оксида и гидроксида уже не основный, а выраженный амфотерный. Дадим описание основным веществам.


    Среди приведенных примеров с практической точки зрения важное значение имеет такой кристаллогидрат, как FeCL 3* 6H 2 O, или шестиводный хлорид железа (III). Его применяют в медицине для остановки кровотечений и восполнения ионов железа в организме при анемии.

    Девятиводный сульфат железа (III) используется для очистки питьевой воды, так как ведет себя как коагулянт.

    Соединения железа (VI)

    Формулы химических соединений железа, где оно проявляет особую степень окисления +6, можно записать следующим образом:

    • K 2 FeO 4 ;
    • Na 2 FeO 4 ;
    • MgFeO 4 и прочие.

    Все они имеют общее название - ферраты - и обладают схожими свойствами (сильные восстановители). Также они способны обеззараживать и обладают бактерицидным действием. Это позволяет использовать их для обработки питьевой воды в промышленных масштабах.

    Комплексные соединения

    Очень важными в аналитической химии и не только являются особые вещества. Такие, которые образуются в водных растворах солей. Это комплексные соединения железа. Наиболее популярные и хорошо изученные из них следующие.

    1. Гексацианоферрат (II) калия K 4 . Другое название соединения - желтая кровяная соль. Используется для качественного определения в растворе иона железа Fe 3+ . В результате воздействия раствор приобретает красивую ярко-синюю окраску, так как формируется другой комплекс - берлинская лазурь KFe 3+ . Издревле использовалась как
    2. Гексацианоферрат (III) калия K 3 . Другое название - красная кровяная соль. Используется как качественный реагент на определение иона железа Fe 2+ . В результате образуется синий осадок, имеющий название турнбулева синь. Также использовалась, как краситель для ткани.

    Железо в составе органических веществ

    Железо и его соединения, как мы уже убедились, имеют большое практическое значение в хозяйственной жизни человека. Однако, помимо этого, его биологическая роль в организме не менее велика, даже наоборот.

    Существует одно очень важное белок, в состав которого входит данный элемент. Это гемоглобин. Именно благодаря ему происходит транспорт кислорода и осуществляется равномерный и своевременный газообмен. Поэтому роль железа в жизненно важном процессе - дыхании - просто огромна.

    Всего внутри организма человека содержится около 4 грамм железа, которое постоянно должно пополняться за счет потребляемых продуктов питания.

ОПРЕДЕЛЕНИЕ

Железо - элемент восьмой группы четвёртого периода Периодической системы химических элементов Д. И. Менделеева.

А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Физические свойства железа

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.

Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.

Химические свойства железа

Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):

2Fe + 3/2O 2 + nH 2 O = Fe 2 O 3 ×H 2 O.

При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2 .

Железо растворяется в соляной кислоте любой концентрации:

Fe + 2HCl = FeCl 2 + H 2 .

Аналогично происходит растворение в разбавленной серной кислоте:

Fe + H 2 SO 4 = FeSO 4 + H 2 .

В концентрированных растворах серной кислоты железо окисляется до железа (III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO +2H 2 O.

При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.

Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:

2Fe + 3Cl 2 = 2FeCl 3 ;

3Fe + 4I 2 = Fe 3 I 8 .

Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:

6Fe + N 2 = 2Fe 3 N;

2Fe + P = Fe 2 P;

3Fe + P = Fe 3 P.

Железо способно реагировать с такими неметаллами, как углерод и кремний:

3Fe + C = Fe 3 C;

Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):

Fe + CuSO 4 = FeSO 4 + Cu (1);

Fe + 2FeCl 3 = 3FeCl 2 (2).

Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO) 5 , Fe 2 (CO) 9 и Fe 3 (CO) 12 .

Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.

Получение железа

Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).

Примеры решения задач

ПРИМЕР 1

Задание Железная окалина Fe 3 O 4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе).
Решение Запишем уравнения реакций согласно условию задачи:

8HCl + Fe 3 O 4 = FeCl 2 +2FeCl 3 + 4H 2 O (1);

2FeCl 3 + Fe = 3FeCl 2 (2).

Зная плотность и объем раствора соляной кислоты, можно найти его массу:

m sol (HCl) = V(HCl) × ρ (HCl);

m sol (HCl) = 150×1,1 = 165 г.

Рассчитаем массу хлороводорода:

m(HCl) = m sol (HCl) ×ω(HCl)/100%;

m(HCl) = 165×20%/100% = 33 г.

Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода:

v(HCl) = m(HCl)/M(HCl);

v(HCl) = 33/36,5 = 0,904 моль.

Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины:

v(Fe 3 O 4) = 10/232 = 0,043 моль.

Согласно уравнению 1, v(HCl): v(Fe 3 O 4) = 1:8, следовательно, v(HCl) = 8 v(Fe 3 O 4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция:

Fe + 2HCl = FeCl 2 + H 2 (3).

Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию):

v 1 (FeCl 2):v(Fe 2 O 3) = 1:1 = 0,043 моль;

v 1 (FeCl 3):v(Fe 2 O 3) = 2:1;

v 1 (FeCl 3) = 2×v(Fe 2 O 3) = 0,086 моль.

Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3:

v rem (HCl) = v(HCl) – v 1 (HCl) = 0,904 – 0,344 = 0,56 моль;

v 3 (FeCl 2): v rem (HCl) = 1:2;

v 3 (FeCl 2) = 1/2×v rem (HCl) = 0,28 моль.

Определим количество вещества FeCl 2 , образовавшегося в ходе реакции 2, общее количество вещества FeCl 2 и его массу:

v 2 (FeCl 3) = v 1 (FeCl 3) = 0,086 моль;

v 2 (FeCl 2): v 2 (FeCl 3) = 3:2;

v 2 (FeCl 2) = 3/2× v 2 (FeCl 3) = 0,129 моль;

v sum (FeCl 2) = v 1 (FeCl 2) + v 2 (FeCl 2) + v 3 (FeCl 2) = 0,043+0,129+0,28 = 0,452 моль;

m(FeCl 2) = v sum (FeCl 2) ×M(FeCl 2) = 0,452×127 = 57,404 г.

Определим количество вещества и массу железа, вступившего в реакции 2 и 3:

v 2 (Fe): v 2 (FeCl 3) = 1:2;

v 2 (Fe) = 1/2× v 2 (FeCl 3) = 0,043 моль;

v 3 (Fe): v rem (HCl) = 1:2;

v 3 (Fe) = 1/2×v rem (HCl) = 0,28 моль;

v sum (Fe) = v 2 (Fe) + v 3 (Fe) = 0,043+0,28 = 0,323 моль;

m(Fe) = v sum (Fe) ×M(Fe) = 0,323 ×56 = 18,088 г.

Вычислим количество вещества и массу водорода, выделившегося в реакции 3:

v(H 2) = 1/2×v rem (HCl) = 0,28 моль;

m(H 2) = v(H 2) ×M(H 2) = 0,28 ×2 = 0,56 г.

Определяем массу полученного раствора m’ sol и массовую долю FeCl 2 в нём:

m’ sol = m sol (HCl) + m(Fe 3 O 4) + m(Fe) – m(H 2);