Про психологию. Учения и методики

Серная кислота. Химические свойства Температура плавления серной кислоты

Свойства серной кислоты

Безводная серная кислота (моногидрат) представляет собой тяжелую маслянистую жидкость, которая смешивается с водой во всех соотношениях с выделением большого количества тепла. Плотность при 0 °С равна 1,85 г/см 3 . Она кипит при 296 °С и замерзает при - 10 °С. Серной кислотой называют не только моногидрат, но и водные растворы его (), а также растворы трехокиси серы в моногидрате (), называемые олеумом. Олеум на воздухе "дымит" вследствие десорбции из него. Чистая серная кислота бесцветна, техническая окрашена примесями в темный цвет.

Физические свойства серной кислоты, такие, как плотность, температура кристаллизации, температура кипения, зависят от ее состава. На рис. 1 представлена диаграмма кристаллизации системы. Максимумы в ней отвечают составу соединений или, наличие минимумов объясняется тем, что температура кристаллизации смесей двух веществ ниже температуры кристаллизации каждого из них.

Рис. 1

Безводная 100 %-ная серная кислота имеет сравнительно высокую температуру кристаллизации 10,7 °С. Чтобы уменьшить возможность замерзания товарного продукта при перевозке и хранении, концентрацию технической серной кислоты выбирают такой, чтобы она имела достаточно низкую температуру кристаллизации. Промышленность выпускает три вида товарной серной кислоты.

Серная кислота весьма активна. Она растворяет окислы металлов и большинство чистых металлов;вытесняет при повышенной температуре все другие кислоты из солей. Особенно жадно серная кислота соединяется с водой благодаря способности давать гидраты. Она отнимает воду от других кислот, от кристаллогидратов солей и даже кислородных производных углеводородов, которые содержат не воду таковую, а водород и кислород в сочетании Н:О = 2. дерево и другие растительные и животные ткани, содержащие целлюлозу, крахмал и сахар, разрушаются в концентрированной серной кислоте; вода связывается с кислотой и от ткани остается лишь мелкодисперсный углерод. В разбавленной кислоте целлюлоза и крахмал распадаются с образованием сахаров. При попадании на кожу человека концентрированная серная кислота вызывает ожоги.

Высокая активность серной кислоты в сочетании со сравнительно небольшой стоимостью производства предопределили громадные масштабы и чрезвычайное разнообразие ее применения (рис. 2). Трудно найти такую отрасль, в которой не потреблялась в тех или иных количествах серная кислота или произведенные из нее продукты.


Рис. 2

Крупнейшим потребителем серной кислоты является производство минеральных удобрений: суперфосфата, сульфата аммония и др. многие кислоты (например, фосфорная, уксусная, соляная) и соли производятся в значительной части при помощи серной кислоты. Серная кислота широко применяется в производстве цветных и редких металлов. В металлообрабатывающей промышленности серную кислоту или ее соли применяют для травления стальных изделий перед их окраской, лужением, никелированием, хромированием и т.п. значительные количества серной кислоты затрачиваются на очистку нефтепродуктов. Получение ряда красителей (для тканей), лаков и красок (для зданий и машин), лекарственных веществ и некоторых пластических масс также связано с применением серной кислоты. При помощи серной кислоты производятся этиловый и другие спирты, некоторые эфиры, синтетические моющие средства, ряд ядохимикатов для борьбы с вредителями сельского хозяйства и сорными травами. Разбавленные растворы серн6ой кислоты и ее солей применяют в производстве искусственного шелка, в текстильной промышленности для обработки волокна или тканей перед их крашением, а также в других отраслях легкой промышленности. В пищевой промышленности серная кислота применяется при получении крахмала, патоки и ряда других продуктов. Транспорт использует свинцовые сернокислотные аккумуляторы. Серную кислоту используют для осушки газов и при концентрировании кислот. Наконец, серную кислоту применяют в процессах нитрования и при производстве большей части взрывчатых веществ.

Физические свойства.

Чистая 100 %-ная серная кислота (моногидрат) представляет собой бесцветную маслянистую жидкость, застывающую в кристаллическую массу при +10 °С. Реактивная серная кислота имеет обычно плотность 1,84 г/см 3 и содержит около 95 % H 2 SO 4 . Затвердевает она лишь ниже -20 °С.

Температура плавления моногидрата равна 10,37 °С при теплоте плавления 10,5 кДж/моль. В обычных условиях он представляет собой очень вязкую жидкость с весьма высоким значением диэлектрической проницаемости (e = 100 при 25 °С). Незначительная собственная электролитическая диссоциация моногидрата протекает параллельно по двум направлениям: [Н 3 SO 4 + ]·[НSO 4 - ] = 2·10 -4 и [Н 3 О + ]·[НS 2 О 7 - ] = 4·10 -5 . Его молекулярно-ионный состав может быть приближенно охарактеризован следующими данными (в %):

H 2 SO 4 HSO 4 - H 3 SO 4 + H 3 O + HS 2 O 7 - H 2 S 2 O 7
99,5 0,18 0,14 0,09 0,05 0,04

При добавлении даже малых количеств воды преобладающей становится диссоциация по схеме:

Н 2 О + Н 2 SО 4 <==> Н 3 О+ + НSO 4 -

Химические свойства.

H 2 SO 4 - сильная двухосновная кислота.

H 2 SO 4 <--> H + + HSO 4 - <--> 2H + + SO 4 2-

Первая ступень (для средних концентраций) приводит к 100%-ой диссоциации:

K 2 = ( · ) / = 1,2 · 10 -2

1) Взаимодействие с металлами:

a) разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn 0 + H 2 +1 SO 4 (разб) --> Zn +2 SO 4 + H 2 O ­

b) концентрированная H 2 +6 SO 4 - сильный окислитель; при взаимодействии с металлами (кроме Au, Pt) может восстанавливаться до S +4 O 2 , S 0 или H 2 S -2 (без нагревания не реагируют также Fe, Al, Cr - пассивируются):

2Ag 0 + 2H 2 +6 SO 4 --> Ag 2 +1 SO 4 + S +4 O 2 + 2H 2 O

8Na 0 + 5H 2 +6 SO 4 --> 4Na 2 +1 SO 4 + H 2 S -2 + 4H 2 O

2) концентрированная H 2 S +6 O 4 реагирует при нагревании с некоторыми неметаллами за счет своих сильных окислительных свойств, превращаясь в соединения серы более низкой степени окисления, (например, S +4 O 2):

С 0 + 2H 2 S +6 O 4 (конц) --> C +4 O 2 + 2S +4 O 2 + 2H 2 O

S 0 + 2H 2 S +6 O 4 (конц) --> 3S +4 O 2 + 2H 2 O

2P 0 + 5H 2 S +6 O 4 (конц) --> 5S +4 O 2 + 2H 3 P +5 O 4 + 2H 2 O

3) с основными оксидами:

CuO + H 2 SO 4 --> CuSO4 + H2O

CuO + 2H + --> Cu 2+ + H 2 O

4) с гидроксидами:

H 2 SO 4 + 2NaOH --> Na 2 SO 4 + 2H 2 O

H + + OH - --> H 2 O

H 2 SO 4 + Cu(OH) 2 --> CuSO 4 + 2H 2 O

2H + + Cu(OH) 2 --> Cu 2+ + 2H 2 O

5) обменные реакции с солями:

BaCl 2 + H 2 SO 4 --> BaSO 4 + 2HCl

Ba 2+ + SO 4 2- --> BaSO 4

Образование белого осадка BaSO 4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Моногидрат (чистая, 100%-ая серная кислота) является ионизирующим растворителем, имеющим кислотный характер. В нём хорошо растворяются сульфаты многих металлов (переходя при этом в бисульфаты), тогда как соли других кислот растворяются, как правило, лишь при возможности их сольволиза (с переводом в бисульфаты). Азотная кислота ведет себя в моногидрате как слабое основание

HNO 3 + 2 H 2 SO 4 <==> H 3 O + + NO 2 + + 2 HSO 4 -

хлорная - как очень слабая кислота

H 2 SO 4 + HClO 4 = H 3 SO 4 + + ClO 4 -

Фторсульфоновая и хлорсульфоновая оказываются кислотами несколько более сильными (HSO 3 F > HSO 3 Cl > HClO 4). Моногидрат хорошо растворяет многие органические вещества, имеющие в своём составе атомы с неподелёнными электронными парами (способными к присоединению протона). Некоторые из них могут быть затем выделены обратно в неизменённом состоянии путем простого разбавления раствора водой. Моногидрат обладает высоким значением криоскопической константы (6,12°) и им иногда пользуются как средой для определения молекулярных весов.

Концентрированная H 2 SO 4 является довольно сильным окислителем, особенно при нагревании (восстанавливается обычно до SO 2). Например, она окисляет HI и частично HВr (но не HСl) до свободных галогенов. Окисляются ею и многие металлы - Cu, Hg и др. (тогда как золото и платина по отношению к H 2 SO 4 устойчивы). Так взаимодействие с медью идёт по уравнению:

Cu + 2 H 2 SO 4 = CuSO 4 + SO 2 ­ + H 2 O

Действуя в качестве окислителя, серная кислота обычно восстанавливается до SO 2 . Однако наиболее сильными восстановителями она может быть восстановлена до S и даже H 2 S. С сероводородом концентрированная серная кислота реагирует по уравнению:

H 2 SO 4 + H 2 S = 2H 2 O + SO 2 + S

Следует отметить, что она частично восстанавливается также газообразным водородом и поэтому не может применяться для его осушки.

Рис. 13. Электропроводность растворов серной кислоты.

Растворение концентрированной серной кислоты в воде сопровождается значительным выделением тепла (и некоторым уменьшением общего объёма системы). Моногидрат почти не проводит электрического тока. Напротив, водные растворы серной кислоты являются хорошими проводниками. Как видно на рис. 13, максимальной электропроводностью обладает приблизительно 30 %-ная кислота. Минимум кривой соответствует гидрату состава H 2 SO 4 ·H 2 O.

Выделение тепла при растворении моногидрата в воде составляет (в зависимости от конечной концентрации раствора) до 84 кДж/моль H 2 SO 4 . Напротив, смешиванием 66 %-ной серной кислоты, предварительно охлажденной до 0 °С, со снегом (1:1 по массе) может быть достигнуто понижение температуры, до -37 °С.

Изменение плотности водных растворов H 2 SO 4 с её концентрацией (вес. %) дано ниже:

5 10 20 30 40 50 60
15 °С 1,033 1,068 1,142 1,222 1,307 1,399 1,502
25 °С 1,030 1,064 1,137 1,215 1,299 1,391 1,494
70 80 90 95 97 100
15 °С 1,615 1,732 1,820 1,839 1,841 1,836
25 °С 1,606 1,722 1,809 1,829 1,831 1,827

Как видно из этих данных, определение по плотности концентрации серной кислоты выше 90 вес. % становится весьма неточным.

Давление водяного пара над растворами H 2 SO 4 различной концентрации при разных температурах показано на рис. 15. В качестве осушителя серная кислота может действовать лишь до тех пор, пока давление водяного пара над её раствором меньше, чем его парциальное давление в осушаемом газе.

Рис. 15. Давление водяного пара.

Рис. 16. Температуры кипения над растворами H 2 SO 4 . растворов H 2 SO 4 .

При кипячении разбавленного раствора серной кислоты из него отгоняется вода, причём температура кипения повышается вплоть до 337 °С, когда начинает перегоняться 98,3 % H 2 SO 4 (рис. 16). Напротив, из более концентрированных растворов улетучивается избыток серного ангидрида. Пар кипящей при 337 °С серной кислоты частично диссоциирован на H 2 O и SO 3 , которые вновь соединяются при охлаждении. Высокая температура кипения серной кислоты позволяет использовать её для выделения при нагревании легколетучих кислот из их солей (например, HCl из NaCl).

Получение.

Моногидрат может быть получен кристаллизацией концентрированной серной кислоты при -10 °С.

Производство серной кислоты.

1-я стадия. Печь для обжига колчедана.

4FeS 2 + 11O 2 --> 2Fe 2 O 3 + 8SO 2 + Q

Процесс гетерогенный:

1) измельчение железного колчедана (пирита)

2) метод "кипящего слоя"

3) 800°С; отвод лишнего тепла

4) увеличение концентрации кислорода в воздухе

2-я стадия. После очистки, осушки и теплообмена сернистый газ поступает в контактный аппарат, где окисляется в серный ангидрид (450°С - 500°С; катализатор V 2 O 5):

2SO 2 + O 2 <--> 2SO 3

3-я стадия. Поглотительная башня:

nSO 3 + H 2 SO 4 (конц) --> (H 2 SO 4 · nSO 3)(олеум)

Воду использовать нельзя из-за образования тумана. Применяют керамические насадки и принцип противотока.

Применение.

Помните! Серную кислоту нужно вливать малыми порциями в воду, а не на оборот. Иначе может произойти бурная химическая реакция, в результате которой человек может получить сильные ожоги.

Серная кислота - один из основных продуктов химической промышленности. Идет на производство минеральных удобрений (суперфосфат, сульфат аммония), различных кислот и солей, лекарственных и моющих средств, красителей, искусственных волокон, взрывчатых веществ. Применяется в металлургии (разложение руд, напр. урановых), для очистки нефтепродуктов, как осушитель и др.

Практически важно то обстоятельство, что очень крепкая (выше 75 %) серная кислота не действует на железо. Это позволяет хранить и перевозить её в стальных цистернах. Напротив, разбавленная H 2 SO 4 легко растворяет железо с выделением водорода. Окислительные свойства для неё вовсе не характерны.

Крепкая серная кислота энергично поглощает влагу и поэтому часто применяется для осушки газов. От многих органических веществ, содержащих в своём составе водород и кислород, она отнимает воду, что нередко используется в технике. С этим же (а также с окислительными свойствами крепкой H 2 SO 4) связано её разрушающее действие на растительные и животные ткани. Случайно попавшую при работе на кожу или платье серную кислоту следует тотчас же смыть большим количеством воды, затем смочить пострадавшее место разбавленным раствором аммиака и вновь промыть водой.

Молекулы чистой серной кислоты.

Рис.1. Схема водородных связей в кристалле H 2 SO 4 .

Молекулы, образующие кристалл моногидрата, (НО) 2 SO 2 соединены друг с другом довольно сильными (25 кДж/моль) водородными связями, как это схематически показано на рис. 1. Сама молекула (НО) 2 SO 2 имеет структуру искаженного тетраэдра с атомом серы около центра и характеризуется следующими параметрами: (d(S-ОН) = 154 пм, РНО-S-ОН = 104°, d(S=O) = 143 пм, РOSO = 119°. В ионе HOSO 3 - , d(S-ОН) = 161 и d(SO) = 145 пм, а при переходе к иону SO 4 2- тетраэдр приобретает правильную форму и параметры выравниваются .

Кристаллогидраты серной кислоты.

Для серной кислоты известно несколько кристаллогидратов, состав которых показан на рис. 14. Из них наиболее бедный водой представляет собой соль оксония: H 3 O + HSO 4 - . Так как рассматриваемая система очень склонна к переохлаждению, фактически наблюдаемые в ней температуры замерзания лежат гораздо ниже температур плавления.

Рис. 14. Температуры плавления в системе H 2 O·H 2 SO 4 .


Серная кислота H 2 SO 4 , молярная масса 98,082; бесцветная маслянистая без запаха. Очень сильная двухосновная кислота, при 18°С pK a 1 - 2,8, K 2 1,2·10 -2 , pK a 2 1,92; длины связей в S=O 0,143 нм, S-ОН 0,154 нм, угол HOSOH 104°, OSO 119°; кипит с разложением, образуя (98,3% H 2 SO 4 и 1,7% Н 2 О с температурой кипения 338,8°С; см. также табл. 1). Серная кислота , отвечающая 100%-ному содержанию H 2 SO 4 , имеет состав (%): H 2 SO 4 99,5%, HSO 4 - 0,18%, H 3 SO 4 + 0,14%, H 3 О + 0,09%, H 2 S 2 O 7 0,04%, HS 2 O 7 0,05%. Смешивается с и SO 3 во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на Н + , HSO 4 - и SO 4 2- . Образует H 2 SO 4 ·n H 2 O, где n =1, 2, 3, 4 и 6,5.

растворы SO 3 в серной кислоте называются олеумом, они образуют два соединения H 2 SO 4 ·SO 3 и H 2 SO 4 ·2SO 3 . Олеум содержит также пиросерную кислоту, получающуюся по реакции: Н 2 SO 4 +SO 3 =H 2 S 2 O 7 .

Получение серной кислоты

Сырьем для получения серной кислоты служат: S, сульфиды металлов, H 2 S, отходящие теплоэлектростанций, сульфаты Fe, Ca и др. Основные стадии получения серной кислоты : 1) сырья с получением SO 2 ; 2) SO 2 до SO 3 (конверсия); 3) SO 3 . В промышленности применяют два метода получения серной кислоты , отличающихся способом окисления SO 2 , - контактный с использованием твердых катализаторов (контактов) и нитрозный - с оксидами азота. Для получения серной кислоты контактным способом на современных заводах применяют ванадиевые катализаторы, вытеснившие Pt и оксиды Fe. Чистый V 2 O 5 обладает слабой каталитической активностью, резко возрастающей в присутствии щелочных металлов, причем наибольшее влияние оказывают соли К. Промотирующая роль щелочных металлов обусловлена образованием низкоплавких пиросульфованадатов (3К 2 S 2 О 7 · V 2 О 5 , 2К 2 S 2 O 7 · V 2 O 5 и K 2 S 2 O 7 ·V 2 O 5 , разлагающихся соответственно при 315-330, 365-380 и 400-405 °С). Активный компонент в условиях катализа находится в расплавленном состоянии.

Схему окисления SO 2 в SO 3 можно представить следующим образом:

На первой стадии достигается равновесие, вторая стадия медленная и определяет скорость процесса.

Производство серной кислоты из серы по методу двойного контактирования и двойной абсорбции (рис. 1) состоит из следующих стадий. Воздух после очистки от пыли подается газодувкой в сушильную башню, где он осушается 93-98%-ной серной кислотой до содержания влаги 0,01% по объему. Осушенный воздух поступает в серную печь после предварительного подогрева в одном из теплообменников контактного узла. В печи сжигается сера, подаваемая форсунками: S + О 2 = SO 2 + 297,028 кДж. Газ, содержащий 10-14% по объему SO 2 , охлаждается в котле и после разбавления воздухом до содержания SO 2 9-10% по объему при 420°С поступает в контактный аппарат на первую стадию конверсии, которая протекает на трех слоях катализатора (SO 2 + V 2 O 2 = SO 3 + 96,296 кДж), после чего газ охлаждается в теплообменниках. Затем газ, содержащий 8,5-9,5% SO 3 , при 200°С поступает на первую стадию абсорбции в абсорбер, орошаемый и 98%-ной серной кислотой : SO 3 + Н 2 О = Н 2 SO 4 + 130,56 кДж. Далее газ проходит очистку от брызг серной кислоты , нагревается до 420°С и поступает на вторую стадию конверсии, протекающую на двух слоях катализатора. Перед второй стадией абсорбции газ охлаждается в экономайзере и подается в абсорбер второй ступени, орошаемый 98%-ной серной кислотой , и затем после очистки от брызг выбрасывается в атмосферу.

1 - серная печь; 2 - котел-утилизатор; 3 - экономайзер; 4 - пусковая топка; 5, 6 - теплообменники пусковой топки; 7 - контактный аппарат; 8 - теплообменники; 9 - олеумный абсорбер; 10 - сушильная башня; 11 и 12 - соответственно первый и второй моногидратные абсорберы; 13 - сборники кислоты.

1 - тарельчатый питатель; 2 - печь; 3 - котел-утилизатор; 4 - циклоны; 5 - электрофильтры; 6 - промывные башни; 7 - мокрые электрофильтры; 8 - отдувочная башня; 9 - сушильная башня; 10 - брызгоуловитель; 11 - первый моногидратный абсорбер; 12 - теплообменники; 13 - контактный аппарат; 14 - олеумный абсорбер; 15 - второй моногидратный абсорбер; 16 - холодильники; 17 - сборники.

1 - денитрационная башня; 2, 3 - первая и вторая продукционные башни; 4 - окислительная башня; 5, 6, 7 - абсорбционные башни; 8 - электрофильтры.

Производство серной кислоты из сульфидов металлов (рис. 2) существенно сложнее и состоит из следующих операций. Обжиг FeS 2 производят в печи кипящего слоя на воздушном дутье: 4FeS 2 + 11О 2 = 2Fe 2 O 3 + 8SO 2 + 13476 кДж. Обжиговый газ с содержанием SO 2 13-14%, имеющий температуру 900°С, поступает в котел, где охлаждается до 450°С. Очистку от пыли осуществляют в циклоне и электрофильтре. Далее газ проходит через две промывные башни, орошаемые 40%-ной и 10%-ной серной кислотой . При этом газ окончательно очищается от пыли, фтора и мышьяка. Для очистки газа от аэрозоля серной кислоты , образующегося в промывных башнях, предусмотрены две ступени мокрых электрофильтров. После осушки в сушильной башне, перед которой газ разбавляется до содержания 9% SO 2 , его газодувкой подают на первую стадию конверсии (3 слоя катализатора). В теплообменниках газ подогревается до 420°С благодаря теплу газа, поступающего с первой стадии конверсии. SO 2 , окисленный на 92-95% в SO 3 , идет на первую стадию абсорбции в олеумный и моногидратный абсорберы, где освобождается от SO 3 . Далее газ с содержанием SO 2 ~ 0,5% поступает на вторую стадию конверсии, которая протекает на одном или двух слоях катализатора. Предварительно газ нагревается в другой группе теплообменников до420 °С благодаря теплу газов, идущих со второй стадии катализа. После отделения SO 3 на второй стадии абсорбции газ выбрасывается в атмосферу.

Степень превращения SO 2 в SO 3 при контактном способе 99,7%, степень абсорбции SO 3 99,97%. Производство серной кислоты осуществляют и в одну стадию катализа, при этом степень превращения SO 2 в SO 3 не превышает 98,5%. Перед выбросом в атмосферу газ очищают от оставшегося SO 2 (см. ). Производительность современных установок 1500-3100 т/сут.

Сущность нитрозного метода (рис. 3) состоит в том, что обжиговый газ после охлаждения и очистки от пыли обрабатывают так называемой нитрозой - серной кислотой , в которой растворены оксиды азота. SO 2 поглощается нитрозой, а затем окисляется: SO 2 + N 2 O 3 + Н 2 О = Н 2 SO 4 + NO. Образующийся NO плохо растворим в нитрозе и выделяется из нее, а затем частично окисляется кислородом в газовой фазе до NO 2 . Смесь NO и NO 2 вновь поглощается серной кислотой и т.д. Оксиды азота не расходуются в нитрозном процессе и возвращаются в производственный цикл, вследствие неполного поглощения их серной кислотой они частично уносятся отходящими газами. Достоинства нитрозного метода: простота аппаратурного оформления, более низкая себестоимость (на 10-15% ниже контактной), возможность 100%-ной переработки SO 2 .

Аппаратурное оформление башенного нитрозного процесса несложно: SO 2 перерабатывается в 7-8 футерованных башнях с керамической насадкой, одна из башен (полая) является регулируемым окислительным объемом. Башни имеют сборники кислоты, холодильники, насосы, подающие кислоту в напорные баки над башнями. Перед двумя последними башнями устанавливается хвостовой вентилятор. Для очистки газа от аэрозоля серной кислоты служит электрофильтр. Оксиды азота, необходимые для процесса, получают из HNO 3 . Для сокращения выброса оксидов азота в атмосферу и 100%-ной переработки SO 2 между продукционной и абсорбционной зонами устанавливается безнитрозный цикл переработки SO 2 в комбинации с водно-кислотным методом глубокого улавливания оксидов азота. Недостаток нитрозного метода - низкое качество продукции: концентрация серной кислоты 75%, наличие оксидов азота, Fe и др. примесей.

Для уменьшения возможности кристаллизации серной кислоты при перевозке и хранении установлены стандарты на товарные сорта серной кислоты , концентрация которых соответствует наиболее низким температурам кристаллизации. Содержание серной кислоты в технических сортах (%): башенная (нитрозная) 75, контактная 92,5-98,0, олеум 104,5, высокопроцентный олеум 114,6, аккумуляторная 92-94. Серную кислоту хранят в стальных резервуарах объемом до 5000 м 3 , их общая емкость на складе рассчитана на десятисуточньй выпуск продукции. Олеум и серную кислоту перевозят в стальных железнодорожных цистернах. Концентрированную и аккумуляторную серную кислоту перевозят в цистернах из кислотостойкой стали. Цистерны для перевозки олеума покрывают теплоизоляцией и перед заливкой олеум подогревают.

Определяют серную кислоту колориметрически и фотометрически, в виде взвеси BaSO 4 - фототурбидиметрически, а также кулонометрическим методом.

Применение серной кислоты

Серную кислоту применяют в производстве минеральных удобрений, как электролит в свинцовых аккумуляторах, для получения различных минеральных кислот и солей, химических волокон, красителей, дымообразующих веществ и взрывчатых веществ, в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности. Ее используют в промышленном органическом синтезе в реакциях дегидратации (получение диэтилового эфира, сложных эфиров), гидратации (этанол из этилена), сульфирования ( и промежуточные продукты в производстве красителей), алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На 1 т Р 2 О 5 фосфорных удобрений расходуется 2,2-3,4 т серной кислоты , а на 1 т (NH 4) 2 SO 4 - 0,75 т серной кислоты . Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений. Мировое производство серной кислоты в 1987 достигло 152 млн. тонн.

Серная кислота и олеум - чрезвычайно агрессивные вещества, поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко - ларингит, трахеит, бронхит и т.д. ПДК аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м 3 , в атмосферном 0,3 мг/м 3 (максимальная разовая) и 0,1 мг/м 3 (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Сера представляет собой химический элемент, который находится в шестой группе и третьем периоде таблицы Менделеева. В этой статье мы подробно рассмотрим ее химические и получение, использование и так далее. В физическую характеристику входят такие признаки, как цвет, уровень электропроводности, температура кипения серы и т. д. Химическая же описывает ее взаимодействие с другими веществами.

Сера с точки зрения физики

Это хрупкое вещество. При нормальных условиях оно пребывает в твердом агрегатном состоянии. Сера обладает лимонно-желтой окраской.

И в большинстве своем все ее соединения имеют желтые оттенки. В воде не растворяется. Обладает низкой тепло- и электропроводностью. Данные признаки характеризуют ее как типичный неметалл. Несмотря на то что химический состав серы совсем не сложен, данное вещество может иметь несколько вариаций. Все зависит от строения кристаллической решетки, с помощью которой соединяются атомы, молекул же они не образовывают.

Итак, первый вариант - ромбическая сера. Она является наиболее устойчивой. Температура кипения серы такого типа составляет четыреста сорок пять градусов по шкале Цельсия. Но для того чтобы данное вещество перешло в газообразное агрегатное состояние, ему сначала необходимо пройти жидкое. Итак, плавление серы происходит при температуре, которая составляет сто тринадцать градусов Цельсия.

Второй вариант - моноклинная сера. Она представляет собой кристаллы игольчатой формы с темно-желтой окраской. Плавление серы первого типа, а затем ее медленное охлаждение приводит к формированию данного вида. Эта разновидность обладает почти теми же физическими характеристиками. К примеру, температура кипения серы такого типа - все те же четыреста сорок пять градусов. Кроме того, есть такая разновидность данного вещества, как пластическая. Ее получают посредством выливания в холодную воду нагретой почти до кипения ромбической. Температура кипения серы данного вида такая же. Но вещество обладает свойством тянуться, как резина.

Еще одна составляющая физической характеристики, о которой хотелось бы сказать, - температура воспламенения серы.

Данный показатель может разниться в зависимости от типа материала и его происхождения. К примеру, температура воспламенения серы технической составляет сто девяносто градусов. Это довольно низкий показатель. В других случаях температура вспышки серы может составлять двести сорок восемь градусов и даже двести пятьдесят шесть. Все зависит от того, из какого материала была она добыта, какую имеет плотность. Но можно сделать вывод, что температура горения серы достаточно низкая, по сравнению с другими химическими элементами, это легковоспламеняющееся вещество. Кроме того, иногда сера может объединяться в молекулы, состоящие из восьми, шести, четырех либо двух атомов. Теперь, рассмотрев серу с точки зрения физики, перейдем к следующему разделу.

Химическая характеристика серы

Данный элемент обладает сравнительно низкой атомной массой, она равняется тридцати двум граммам на моль. Характеристика элемента сера включает в себя такую особенность данного вещества, как способность обладать разной степенью окисления. Этим она отличается от, скажем, водорода или кислорода. Рассматривая вопрос о том, какова химическая характеристика элемента сера, невозможно не упомянуть, что он, в зависимости от условий, проявляет как восстановительные, так и окислительные свойства. Итак, по порядку рассмотрим взаимодействие данного вещества с различными химическими соединениями.

Сера и простые вещества

Простыми являются вещества, которые имеют в своем составе только один химический элемент. Его атомы могут объединяться в молекулы, как, например, в случае с кислородом, а могут и не соединяться, как это бывает у металлов. Так, сера может вступать в реакции с металлами, другими неметаллами и галогенами.

Взаимодействие с металлами

Для осуществления подобного рода процесса необходима высокая температура. При таких условиях происходит реакция присоединения. То есть атомы металла объединяются с атомами серы, образуя при этом сложные вещества сульфиды. Например, если нагреть два моль калия, смешав их с одним моль серы, получим один моль сульфида данного металла. Уравнение можно записать в следующем виде: 2К + S = K 2 S.

Реакция с кислородом

Это сжигание серы. Вследствие данного процесса образуется ее оксид. Последний может быть двух видов. Поэтому сжигание серы может происходить в два этапа. Первый - это когда из одного моль серы и одного моль кислорода образуется один моль диоксида сульфура. Записать уравнение данной химической реакции можно следующим образом: S + О 2 = SO 2 . Второй этап - присоединение к диоксиду еще одного атома оксигена. Происходит это, если добавить к двум моль один моль кислорода в условиях высокой температуры. В результате получим два моль триоксида сульфура. Уравнение данного химического взаимодействия выглядит таким образом: 2SO 2 + О 2 = 2SO 3 . В результате такой реакции образуется серная кислота. Так, осуществив два описанных процесса, можно пропустить полученный триоксид через струю водяного пара. И получим Уравнение подобной реакции записывается следующим образом: SO 3 + Н 2 О = H 2 SO 4 .

Взаимодействие с галогенами

Химические как и других неметаллов, позволяют ей реагировать с данной группой веществ. К ней относятся такие соединения, как фтор, бром, хлор, йод. Сера реагирует с любым из них, за исключением последнего. В качестве примера можно привести процесс фторирования рассматриваемого нами элемента таблицы Менделеева. С помощью разогревания упомянутого неметалла с галогеном можно получить две вариации фторида. Первый случай: если взять один моль сульфура и три моль фтора, получим один моль фторида, формула которого SF 6 . Уравнение выглядит так: S + 3F 2 = SF 6 . Кроме того, есть второй вариант: если взять один моль серы и два моль фтора, получим один моль фторида с химической формулой SF 4 . Уравнение записывается в следующем виде: S + 2F 2 = SF 4 . Как видите, все зависит от пропорций, в которых смешать компоненты. Точно таким же образом можно провести процесс хлорирования серы (также может образоваться два разных вещества) либо бромирования.

Взаимодействие с другими простыми веществами

На этом характеристика элемента сера не заканчивается. Вещество также может вступать в химическую реакцию с гидрогеном, фосфором и карбоном. Вследствие взаимодействия с водородом образуется сульфидная кислота. В результате её реакции с металлами можно получить их сульфиды, которые, в свою очередь, также получают прямым путем взаимодействия серы с тем же металлом. Присоединение атомов гидрогена к атомам сульфура происходит только в условиях очень высокой температуры. При реакции серы с фосфором образуется ее фосфид. Он имеет такую формулу: P 2 S 3. Для того чтобы получить один моль данного вещества, нужно взять два моль фосфора и три моль сульфура. При взаимодействии серы с углеродом образуется карбид рассматриваемого неметалла. Его химическая формула выглядит так: CS 2 . Для того чтобы получить один моль данного вещества, нужно взять один моль углерода и два моль серы. Все описанные выше реакции присоединения происходят только при условии нагревания реагентов до высоких температур. Мы рассмотрели взаимодействие серы с простыми веществами, теперь перейдем к следующему пункту.

Сера и сложные соединения

Сложными называются те вещества, молекулы которых состоят из двух (или более) разных элементов. Химические свойства серы позволяют ей реагировать с такими соединениями, как щелочи, а также концентрированная сульфатная кислота. Реакции ее с данными веществами довольно своеобразны. Сначала рассмотрим, что происходит при смешивании рассматриваемого неметалла со щелочью. Например, если взять шесть моль и добавить к ним три моль серы, получим два моль сульфида калия, один моль сульфита данного металла и три моль воды. Такого рода реакцию можно выразить следующим уравнением: 6КОН + 3S = 2K 2 S + K2SO 3 + 3Н 2 О. По такому же принципу происходит взаимодействие, если добавить Далее рассмотрим поведение серы при добавлении к ней концентрированного раствора сульфатной кислоты. Если взять один моль первого и два моль второго вещества, получим следующие продукты: триоксид серы в количестве три моль, а также воду - два моль. Данная химическая реакция может осуществиться только при нагревании реагентов до высокой температуры.

Получение рассматриваемого неметалла

Существует несколько основных способов, с помощью которых можно добыть серу из разнообразных веществ. Первый метод - выделение ее из пирита. Химическая формула последнего - FeS 2 . При нагревании данного вещества до высокой температуры без доступа к нему кислорода можно получить другой сульфид железа - FeS - и серу. Уравнение реакции записывается в следующем виде: FeS 2 = FeS + S. Второй способ получения серы, который часто используется в промышленности, - это сжигание сульфида серы при условии небольшого количества кислорода. В таком случае можно получить рассматриваемый неметалл и воду. Для проведения реакции нужно взять компоненты в молярном соотношении два к одному. В результате получим конечные продукты в пропорциях два к двум. Уравнение данной химической реакции можно записать следующим образом: 2H 2 S + О 2 = 2S + 2Н 2 О. Кроме того, серу можно получить в ходе разнообразных металлургических процессов, к примеру, при производстве таких металлов, как никель, медь и другие.

Использование в промышленности

Самое широкое свое применение рассматриваемый нами неметалл нашел в химической отрасли. Как уже упоминалось выше, здесь он используется для получения из него сульфатной кислоты. Кроме того, сера применяется как компонент для изготовления спичек, благодаря тому, что является легковоспламеняющимся материалом. Незаменима она и при производстве взрывчатых веществ, пороха, бенгальских огней и др. Кроме того, серу используют в качестве одного из ингредиентов средств для борьбы с вредителями. В медицине ее применяют в качестве компонента при изготовлении лекарств от кожных заболеваний. Также рассматриваемое вещество используется при производстве разнообразных красителей. Кроме того, ее применяют при изготовлении люминофоров.

Электронное строение серы

Как известно, все атомы состоят из ядра, в котором находятся протоны - позитивно заряженные частицы - и нейтроны, т. е. частицы, имеющие нулевой заряд. Вокруг ядра вращаются электроны, заряд которых негативный. Чтобы атом был нейтральным, в его структуре должно быть одинаковое количество протонов и электронов. Если же последних больше, это уже отрицательный ион - анион. Если же наоборот - количество протонов больше, чем электронов - это положительный ион, или катион. Анион серы может выступать в качестве кислотного остатка. Он входит в состав молекул таких веществ, как сульфидная кислота (сероводород) и сульфиды металлов. Анион образуется в ходе электролитической диссоциации, которая происходит при растворении вещества в воде. При этом молекула распадается на катион, который может быть представлен в виде иона металла либо водорода, а также катион - ион кислотного остатка либо гидроксильной группы (ОН-).

Так как порядковый номер серы в таблице Менделеева - шестнадцать, то можно сделать вывод, что в ее ядре находится именно такое количество протонов. Исходя из этого, можно сказать, что и электронов, вращающихся вокруг, тоже шестнадцать. Количество же нейтронов можно узнать, отняв от молярной массы порядковый номер химического элемента: 32 - 16 = 16. Каждый электрон вращается не хаотично, а по определенной орбите. Так как сера - химический элемент, который относится к третьему периоду таблицы Менделеева, то и орбит вокруг ядра три. На первой из них расположено два электрона, на второй - восемь, на третьей - шесть. Электронная формула атома серы записывается следующим образом: 1s2 2s2 2p6 3s2 3p4.

Распространенность в природе

В основном рассматриваемый химический элемент встречается в составе минералов, которые являются сульфидами разнообразных металлов. В первую очередь это пирит - соль железа; также это свинцовый, серебряный, медный блеск, цинковая обманка, киноварь - сульфид ртути. Кроме того, сера может входить и в состав минералов, структура которых представлена тремя и более химическими элементами.

Например, халькопирит, мирабилит, кизерит, гипс. Можно рассмотреть каждый из них более подробно. Пирит - это сульфид феррума, или FeS 2 . Он обладает светло-желтой окраской с золотистым блеском. Данный минерал можно часто встретить как примесь в лазурите, который широко используется для изготовления украшений. Это связано с тем, что данные два минерала зачастую имеют общее месторождение. Медный блеск - халькоцит, или халькозин - представляет собой синевато-серое вещество, похожее на металл. и серебряный блеск (аргентит) имеют схожие свойства: они оба внешне напоминают металлы, имеют серую окраску. Киноварь - это коричневато-красный тусклый минерал с серыми вкраплениями. Халькопирит, химическая формула которого CuFeS 2 , - золотисто-желтый, его еще называют золотой обманкой. Цинковая обманка (сфалерит) может иметь окраску от янтарной до огненно-оранжевой. Мирабилит - Na 2 SO 4 x10H 2 O - прозрачные либо белые кристаллы. Его еще называют применяют в медицине. Химическая формула кизерита - MgSO 4 xH 2 O. Он выглядит как белый либо бесцветный порошок. Химическая формула гипса - CaSO 4 x2H 2 O. Кроме того, данный химический элемент входит в состав клеток живых организмов и является важным микроэлементом.