Про психологию. Учения и методики

Мировые научные технические достижения. Интересное в мире науки и техники

Процессор для искусственного интеллекта, 3D-принтер для человеческих органов, посадка зонда на комету и другие важные научные события и технологические новинки прошедшего года.

Зачастую реальные достижения науки оказываются более поразительными, чем самые смелые предсказания фантастов. iBusiness представляет обзор самых впечатляющих достижений науки за 2014 год и новых технологий, способных изменить привычный нам мир.

Нейросинаптический процессор IBM

Одним из самых значимых событий 2014 года в сфере компьютерной техники стало не появление увеличенного iPhone 6, а презентация компанией IBM первого рабочего образца нейросинаптического чипа TrueNorth, принцип работы которого похож на механизм функционирования человеческого мозга.

От традиционных процессоров, построенных на архитектуре фон Неймана, он отличается тем, что одно ядро чипа содержит сразу вычислительный и коммуникационный модули, а также собственную память. В результате все ядра процессора могут работать параллельно, обрабатывая за единицу времени очень большие объемы данных, а мощность всей вычислительной системы очень легко наращивать, просто соединяя несколько чипов.

Чип IBM TrueNorth эмулирует работу одного миллиона нейронов и 256 миллионов программируемых синапсов

Чип TrueNorth размером с почтовую марку создан на базе 28-нм техпроцесса, содержит 4096 ядер, 5,4 миллиарда транзисторов и требует для работы всего 70 милливатт, что значительно меньше энергопотребления современных традиционных процессоров. При этом он моделирует работу одного миллиона нейронов, 256 миллионов программируемых синапсов и способен производить до 46 миллиардов операций в секунду на один ватт.

Появление TrueNorth обещает настоящий переворот в области облачных вычислений — системы на нейросинаптических чипах могут значительно ускорить сложные процессы, такие как распознавание образов, машинный перевод и анализ больших данных. Компьютеры с подобными процессорами могут стать центром «умных» автомобилей, систем безопасности и многих других видов техники. В IBM планируют адаптировать чип и к мобильным устройствам, что позволит увеличить производительность смартфонов и планшетов, а также значительно продлить время их автономной работы. В перспективе нейросинаптическая технология даже позволит создать компьютер, сопоставимый по вычислительной мощности с человеческим мозгом.

Миниатюрный радиоконтроллер

Одним из главных трендов развития компьютерной техники за последние несколько лет стал «интернет вещей» — объединение различных устройств, от лампочек до бытовой техники и автомобилей, в единую сеть с возможностью удаленного управления и «умным» режимом автоматической работы. Два «условия» для начала массового распространения подобных устройств уже существуют — это интернет как набор технологий и инфраструктура для передачи данных, и различная мобильная техника, которая может использоваться для управления.

В прошедшем году команда инженеров из Стенфордского университета представила недостающий третий компонент — мини-контроллеры, способные получать и ретранслировать команды, переданные с помощью радиосигнала.

Размеры радиоконтроллера составляют около 2 мм

Уникальность этих модулей, помимо миниатюрных размеров, состоит в том, что они не требуют собственного источника питания — вся необходимая для их работы энергия извлекается непосредственно из электромагнитных волн, переносящих сам радиосигнал. Кроме этого, модули имеют очень низкую себестоимость, что позволяет оснастить ими буквально каждую вещь из окружения современного человека. Появление контроллеров с такими характеристиками значительно ускорит выход новой подключаемой техники и распространение «интернета вещей» в целом.

Микро 3D-печать

Сейчас 3D-принтеры используются преимущественно для печати несложных фигур из пластика, которые не могут похвастаться ни высокой точностью изготовления, ни прочностью. Кардинально изменить ситуацию призваны печатные установки, разработанные учеными из Гарвардского университета. Созданные ими принтеры способны использовать сочетания самых разных материалов при печати, от полимеров и металлов до живых клеток, и обеспечивают точность до одного микрометра.

3D-принтеры, разработанные в Гарвардском университете, способны печатать живыми клетками

При помощи подобных установок в лаборатории уже были напечатаны такие вещи, как литий-ионные батареи, бионические протезы уха, сочетающие живую ткань и электронные компоненты, ткани сетчатки глаза и даже образцы тканей с системой кровеносных сосудов.

В перспективе такие устройства могут быть использованы для высокоточной печати электронных компонентов по индивидуальному дизайну, а в медицине — для изготовления искусственных органов для тестирования лекарств или даже пересадки пациентам.

Подключение роботизированных протезов к нервной системе человека

Поразительных результатов в разработке человеко-машинного интерфейса удалось достигнуть в прошедшем году ученым из университета Джона Хопкинса. Они успешно продемонстрировали работу системы управления механическими протезами, подключенными непосредственно к нервной системе человека. Благодаря этой технологии пациент, потерявший обе руки в результате несчастного случая, смог одновременно управлять двумя роботизированными манипуляторами и выполнять довольно сложные действия.

Роботизированные протезы подключаются напрямую к нервной системе человека и обладают обучаемостью

Интересно, что система, подключенная к нервам, обладает «обучаемостью». По мере использования протезов выполнять с их помощью различные действия становится проще, так как управление адаптируется к поступающим нервным импульсам.

Хотя вживление роботизированных конечностей требует серьезной подготовки и хирургического вмешательства, успешное завершение эксперимента показало, что возможно совмещение электронных компонентов с нервной системой человека. Такие протезы могут найти применение в медицине уже в ближайшем будущем.

Посадка зонда Philae на комету Чурюмова — Герасименко

Одним из самых впечатляющих научных событий 2014 года, без сомнения, можно считать посадку автоматического зонда Philae на комету P67 Чурюмова — Герасименко. Она стала весьма наглядной иллюстрацией возможностей современной космической науки — посадка зонда на комету, движущуюся со скоростью 21,6 км/сек, была осуществлена после десятилетнего полета с очень сложной траекторией. Суммарный путь, проделанный аппаратом Rosetta, составил почти шесть миллиардов километров.

Посадка зонда Philae на комету стала результатом 10 лет полета

Посадка зонда на комету прошла не совсем гладко: аппарат, скорее всего, оказался лежащим «на боку» и в тени от скалы, что не позволяет солнечным батареям модуля обеспечить его энергией, необходимой для длительной работы. Несмотря на это, в результате миссии ученым удалось получить множество данных, значительную часть которых еще только предстоит обработать. Удалось проанализировать внутреннее строение кометы, найти на ней воду и органические вещества.

В данный момент зонд «Филы» находится в спящем режиме из-за недостаточного количества энергии, вырабатываемой солнечными батареями. Ученые надеются, что приближение кометы к Солнцу улучшит ситуацию и аппарат можно будет активировать уже этой весной для сбора дополнительных данных.

Практически каждый, кто интересуется историей развития науки, техники и технологий - хоть раз в своей жизни задумывался над тем, каким путем могло бы пойти развитие человечества без знания математики или, например, не будь у нас такого необходимого предмета как колесо, ставшего чуть ли не основой развития человечества. Однако зачастую рассматриваются и удостаиваются внимания лишь ключевые открытия, в то время как открытия менее известные и распространенные порой попросту не упоминаются, что, впрочем, не делает их незначительными, ведь каждое новое знание дает человечеству возможность забраться на ступеньку выше в своем развитии.

XX век и его научные открытия превратился в настоящий Рубикон, перейдя который, прогресс ускорил свой шаг в несколько раз, отождествляя себя со спортивным болидом за которым невозможно угнаться. Для того, что бы сейчас удержаться на гребне научной и технологической волны, необходимы не дюжие навыки. Конечно, можно читать научные журналы, различного рода статьи и работы ученых, которые бьются над решением той или иной задачи, однако даже в этом случае угнаться за прогрессом не получится, а стало быть остается наверстывать упущенное и наблюдать.

Как известно, для того, что бы смотреть в будущее, необходимо знать прошлое. Поэтому сегодня речь пойдет именно о XX веке, веке открытий, который изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий века или какой-либо иной топ, это будет краткий осмотр части тех открытий, которые изменяли, а возможно и изменяют мир.

Для того, что бы говорить об открытиях, следует охарактеризовать само понятие. За основу возьмем следующее определение:

Открытие - новое достижение, совершаемое в процессе научного познания природы и общества; установление неизвестных ранее, объективно существующих закономерностей, свойств и явлений материального мира.

Топ 25 великих научных открытий XX века

  1. Квантовая теория Планка. Он вывел формулу, определяющую форму спектральной кривой излучения и универсальную постоянную. Открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.
  2. Открытие рентгеновского излучения – электромагнитное излучение с широким диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном сильно повлияло на жизнь человека и сегодня без них невозможно представить современную медицину.
  3. Теория относительности Эйнштейна. В 1915 году Эйнштейн ввел понятие относительности и вывел важную формулу, связавшую энергию и массу. Теория относительности объяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не результате взаимодействия тел в пространстве.
  4. Открытие пенициллина. Плесневый гриб Penicillium notatum, попадая к культуре бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная , который в дальнейшем стал выпускаться в промышленном масштабе.
  5. Волны де Бройля. В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем частицам, а не только фотонам. Бройль представил их волновые свойства в математическом виде. Теория позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.
  6. Открытие структуры новой спирали ДНК. 1953 году была получена новая модель строения молекулы, путем объединения сведений рентгеноструктурного Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Крик и Джеймс Уотсон.
  7. Планетарная модель атома Резерфорда. Он вывел гипотезу о строении атома и извлек энергию из атомных ядер. Модель объясняет основы закономерности заряженных частиц.
  8. Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.
  9. Открытие транзисторов. Прибор, состоящий из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника начала уменьшаться в размерах. Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.
  10. Создание радиотелеграфа. Изобретение Александра Попова с помощью азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 веков. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.
  11. Открытие нейтронов. Эти незаряженные частицы с массой, немного большей, чем у протонов позволили без препятствий проникать в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих частиц ядра делятся, но возникает еще больше нейтронов. Так была открыта искусственная .
  12. Методика экстракорпорального оплодотворения (ЭКО). Эдварс и Стептоу придумали, как извлечь из женщины неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста условия, придумали, как ее оплодотворить и в какое время вернуть обратно в тело матери.
  13. Первый полет человека в космос. В 1961 году именно Юрий Гагарин первым осуществил этот , ставший реальным воплощением мечты о звездах. Человечество узнало, что пространство между планетами преодолимо, и в космосе могут спокойно находиться бактерии, животные и даже человек.
  14. Открытие фуллерена. В 1985 году учеными была открыта новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во многих приборах. На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые слои графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.
  15. Клонирование. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку. Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.
  16. Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании , гравитация которой настолько велика, что ее не могут покинуть даже объекты, движущиеся со скоростью света - черных дыр.
  17. Теория . Это космологическая общепринятая модель, в которой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся бесконечной температурой и плотностью вещества. Начало модели было положено Эйнштейном в 1916 году.
  18. Открытие реликтового излучения. Это космическое микроволновое фоновое излучение , сохранившееся с начала образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большого взрыва.
  19. Приближение к созданию искусственного интеллекта. Это технология создания интеллектуальных машин, впервые получившая определение в 1956 году Джоном Маккарти . Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, которые биологически могут не наблюдаются у людей.
  20. Изобретение голография. Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в котором при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, близкие к реальным.
  21. Открытие инсулина. В 1922 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.
  22. Группы крови. Это открытие в 1900-1901 разделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, которое не заканчивалось бы трагически.
  23. Математическая теория информации. Теория Клода Шеннона дала возможность определения емкости коммуникационного канала.
  24. Изобретение Нейлона . Химик Уоллес Карозерс в 1935 году открыл способ получения этого полимерного материала. Он открыл некоторые его разновидности с высокой вязкостью даже при больших температурах.
  25. Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще только начинают исследоваться наукой.

Несомненно, что все эти открытия - лишь малая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

Именно прошлый век показал нам новые границы Вселенной, увидела свет , были открыты квазары (сверхмощные источники излучения в нашей Галактике), открыты и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

Все эти открытия, так или иначе - лишь вершина айсберга, который включает в себя более чем сотню значимых открытий за прошедшее столетие. Естественно, что все они стали катализатором изменений в мире, в котором мы с вами сейчас живем и несомненным остается тот факт, что на этом изменения не заканчиваются.

20й век можно смело назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новые достижения с прошлыми, думается, что в будущем нас ждет еще не мало интереснейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти взгляды.

Многое из того, что в недалёком прошлом казалось выдумкой фантастов или настоящей магией сегодня стало реальностью, благодаря инновационным научным открытиям. В этом обзоре мы собрали глобальные достижения человечества, которые радикально изменили жизнь.

Артур Кларк - известный писатель-фантаст, который сформулировал три закона науки и магии. Первый гласил, что когда уважаемый, но пожилой ученый утверждает, что что-то возможно, то он почти наверняка прав. Согласно второму, единственный способ обнаружения пределов возможного - отважиться сделать шаг в невозможное. А третий, что любая достаточно развитая технология неотличима от магии. И действительно, любая из современных технологий показалась бы настоящей магией нашим предкам.

1. Потоковое онлайн-видео


В 2007 году Netflix представила потоковое онлайн-телевидение на персональных компьютерах в качестве одного из своих дополнительных сервисов. В следующем году подобная услуга начала появляться буквально везде, поскольку она стала безумно популярной.

2. Беспилотные автомобили


Проект самоуправляемого автомобиля Google запустил еще в 2008 году В настоящее время беспилотные автомобили Google уже наездили более 3 миллионов километров и проходят испытания на улицах крупных городов по всей территории США.

3. Беспилотная служба доставки


С лета 2016 года интернет-магазин Amazon.com экспериментирует с доставкой товаров с помощью беспилотных дронов. В настоящее время предлагается подобная доставка в течение 2 часов в крупных городах США.

4. Tesla Roadster


Tesla Roadster был выпущен в 2008 году и на то время он стал уникальным достижением в отрасли электрических автомобилей, поскольку мог проехать до 500 км на одной зарядке. С тех пор Tesla продолжает совершенствовать свои полностью электрические машины (в отличие от гибридов, таких как Toyota Prius) и довела их цену уже до всего лишь $ 35 000.

5. Бионический глаз


Second Sight - компания, базирующаяся в Калифорнии, которая получила разрешение в 2013 году на продажу «Bionic Eye». Искусственный глаз использует камеры, которые передают сигналы в имплантат, встроенный в сетчатку глаза. Он восстанавливает зрение не в полной мере, но слепые люди начинают хоть как-то видеть.

6. Смартфон


Apple в 2007 году выпустила самый первый смартфон. Теперь без этих крошечных компьютеров, которые можно носить в кармане и которые еще и умеют звонить, трудно представить себе жизнь.

7. Устройства дополненной реальности


В 2014 году Google дебютировал с Google Glass - первым полностью портативным устройством дополненной реальности. Хотя различные версии VR (виртуальной реальности) и дополненной реальности разрабатываются примерно с 1980-х годов, такие вещи, как Oculus Rift сделали их более доступными для массового рынка.

8. Многоразовые ракеты


Обычно, когда ракета отправляется в космос, это дорога «в один конец». Ракеты с 1960-х годов использовались всего один раз. Но в ноябре и декабре 2015 года два частные компании - Blue Origin и SpaceX - успешно сумели посадить на землю ракеты после запуска, чтобы иметь возможность использовать их повторно. Это преодолело один из самых главных препятствий космических путешествий - их стоимость.

9. Большой адронный коллайдер


Большой адронный коллайдер является самым большим и самым мощным в мире ускорителем частиц, крупнейшей машиной в мире, а также самым большим и самым сложным экспериментальным комплексом, когда-либо созданным людьми. Он позволяет физикам проводить эксперименты и изучать некоторые из наиболее фундаментальных, но до сих пор не доказанных теорий в физике, основные законы, которые управляют Вселенной, а также структуру пространства и времени.

10. Ховерборд


Ховерборд, к сожалению, пока не очень похож на летающую доску из «Назад в будущее». Скорее, он смахивает на нечто среднее между скейтбордом и Segway.

11. Смарт-часы


Смарт-часы в принципе могут делать большинство вещей, которые умеет делать смартфон, хотя с поправкой на крошечный экран. Они, так же, как фитнес-трекеры, являются существенным шагом на дороге к носимым с собой высокотехнологичным устройствам.

12. 3D-органы


3D-напечатанные искусственные органы сегодня стали реальностью. Исследователи уже смогли пересадить 3D-напечатанную щитовидную железу подопытной мыши, а также заменить людям некоторые органы, такие как трахею. Косметические компании в настоящее время работают на созданием 3D-напечатанной кожи, которая могла бы применяться не только для макияжа, но и для лечения ожогов.

13. Планшет


IPad был выпущен совсем недавно - в 2010 году, а в настоящее время уже появились настоящие планшетные ПК. Хотя их можно использовать для многих вещей, основными являются просмотр видео и игры. Планшеты являются связующим звеном между смартфонами и ноутбуками.

14. Электронная книга


Первый Kindle был выпущен компанией Amazon в ноябре 2007 года. Тогда эта «электронная книжка» стоила $ 399 и весь ее тираж был продан менее чем за шесть часов. С тех пор электронные книги заняли устойчивую нишу на рынке продаж электронных девайсов.

15. Краудфандинг


Kickstarter был основан 28 апреля 2009 года и с тех пор эта краудфандинговая площадка изменила способ того, как малые проекты и предприятия получают первоначальный капитал. Другие подобные сайты - Indiegogo, Gofundme и Pateron также позволили финансировать массу полезных стартапов.

Впрочем, открытия случаются не только в области технологий. Не меньший интерес представляют и .

«В настоящее время мы все осознаем, - писал немецкий философ К.Ясперс, - что находимся на переломном рубеже истории. Это - век техники со всеми ее последствиями, которые, по-видимому, не оставят ничего из всего того, что на протяжении тысячелетий человек обрел в области труда, жизни, мышления, в области символики».

Наука и техника в XX столетии стали подлинными локомотивами истории. Они придали ей беспрецедентный динамизм, предоставили во власть человека огромную силу, которая позволила резко увеличить масштабы преобразовательной деятельности людей.

Радикально изменив естественную среду своего обитания, освоив всю поверхность Земли, всю биосферу, человек создал «вторую природу» - искусственную, которая для его жизни не менее значима, чем первая.

Сегодня благодаря огромным масштабам хозяйственной и культурной деятельности людей интенсивно осуществляются интеграционные процессы.

Взаимодействие различных стран и народов стало настолько значительным, что человечество в наше время представляет собой целостную систему, развитие которой реализует единый исторический процесс.

Что же представляет собой наука, которая привела к столь значительным изменениям во всей нашей жизни, во всем облике современной цивилизации? Она сама оказывается сегодня удивительным феноменом, радикально отличающимся от того ее образа, который вырисовывался еще в прошлом веке. Современную науку называют «большой наукой».

Каковы же основные характеристики «большой науки»? Резко возросшее количество ученых

Численность ученых в мире, человек

Наиболее быстрыми темпами количество людей, занимающихся наукой, увеличивалось после второй мировой войны.

Удвоение числа ученых (50-70 гг.)

Такие высокие темпы привели к тому, что около 90% всех ученых, когда-либо живших на Земле, являются нашими современниками.

Рост научной информации

В XX столетии мировая научная информация удваивалась за 10-15 лет. Так, если в 1900 г. было около 10 тысяч научных журналов, то в настоящее время их уже несколько сотен тысяч. Свыше 90% всех важнейших научно-технических достижений приходится на XX в.

Такой колоссальный рост научной информации создает особые трудности для выхода на передний край развития науки. Ученый сегодня должен прилагать огромные усилия для того, чтобы быть в курсе тех достижений, которые осуществляются даже в узкой области его специализации. А ведь он должен еще получать знания из смежных областей науки, информацию о развитии науки в целом, культуры, политики, столь необходимые ему для полноценной жизни и работы и как ученому, и как просто человеку.

Изменение мира науки

Наука сегодня охватывает огромную область знаний. Она включает около 15 тысяч дисциплин, которые все теснее взаимодействуют друг с другом. Современная наука дает нам целостную картину возникновения и развития Метагалактики, появления жизни на Земле и основных стадий ее развития, возникновения и развития человека. Она постигает законы функционирования его психики, проникает в тайны бессознательного, которое играет большую роль в поведении людей. Наука сегодня изучает все, даже саму себя - то как она возникла, развивалась, как взаимодействовала с другими формами культуры, какое влияние оказывала на материальную и духовную жизнь общества.

Вместе с тем, ученые сегодня вовсе не считают, что они постигли все тайны мироздания.

В этом отношении представляется интересным следующее высказывание видного современного французского историка М.Блока о состоянии исторической науки: «Эта наука, переживающая детство, как все науки, чьим предметом является человеческий дух, это запоздалый гость в области рационального познания. Или, лучше сказать: состарившееся, прозябавшее в эмбриональной форме повествование, долго перегруженное вымыслами, еще дольше прикованное к событиям, наиболее непосредственно доступным, как серьезное аналитическое явление, история еще совсем молода».

В сознании современных ученых имеется ясное представление об огромных возможностях дальнейшего развития науки, радикального изменения на основе ее достижений наших представлений о мире и его преобразовании. Особые надежды здесь возлагаются на науки о живом, человеке, обществе. По мнению многих ученых, достижения именно в этих науках и широкое использование их в реальной практической жизни будут во многом определять особенности XXI века.

Превращение научной деятельности в особую профессию

Наука еще совсем недавно была свободной деятельностью отдельных ученых, которая мало интересовала бизнесменов и совсем не привлекала внимания политиков. Она не была профессией и никак специально не финансировалась. Вплоть до конца XIX в. у подавляющего большинства ученых научная деятельность не была главным источником их материального обеспечения. Как правило, научные исследования проводились в то время в университетах, и ученые обеспечивали свою жизнь за счет оплаты их преподавательской работы.

Одна из первых научных лабораторий была создана немецким химиком Ю. Либихом в 1825 г. Она приносила ему значительные доходы. Однако это не было характерным для XIX в. Так, еще в конце прошлого столетия, известный французский микробиолог и химик Л.Пастер на вопрос Наполеона III, почему он не извлекает прибыли из своих открытий, ответил, что ученые Франции полагают унизительным зарабатывать деньги таким образом.

Сегодня ученый - это особая профессия. Миллионы ученых работают в наше время в специальных исследовательских институтах, лабораториях, различного рода комиссиях, советах. В XX в. появилось понятие «научный работник». Нормой стало выполнение функций консультанта или советника, их участие в выработке и принятии решений по самым разнообразным вопросам жизни общества.

Глава 1. Достижения современной науки

12Следующая ⇒

Наука есть постижение мира, в котором мы живем. Постижение это закрепляется в форме знаний как мысленного (понятийного, концептуального, интеллектуального) моделирования действительности.

Соответственно этому науку принято определять как высокоорганизованную и высокоспециализированную деятельность по производству объективных знаний о мире, включающем и самого человека. Вместе с тем производство знаний в обществе не самодостаточно, оно необходимо для поддержания и развития жизнедеятельности человека.

Становление и развитие опытной науки в XVII столетии привело к коренным преобразованиям образа жизни человека. Как отмечал Б. Рассел: “Почти все, чем отличается новый мир от более ранних веков, обусловлено наукой, которая достигла поразительных успехов в XVII веке…

Новый мир, насколько это касается духовных ценностей, начинается с XVII века”

Наука оказывает влияние на все стороны жизни как общества в целом, так и отдельного человека.

Достижения современной науки преломляются тем или иным образом во всех сферах культуры. Наука обеспечивает беспрецедентный технологический прогресс, создавая условия для повышения уровня и качества жизни.

Она выступает и как социально-политический фактор: государство, обладающее развитой наукой и на основе этого создающее передовые технологии, обеспечивает себе и больший вес в международном сообществе. Современное развитие науки ведет к дальнейшим преобразованиям всей системы жизнедеятельности человека.

Особо впечатляющее воздействие на развитие техники и новейших технологий, воздействие научно-технического прогресса на жизнь людей. Наука создает новую среду для бытия человека. «Как и искусство, — пишет М. Хайдеггер, — наука не есть просто культурное занятие человека.

Наука — способ, притом решающий, каким для нас предстает то, что есть. Мы должны, поэтому сказать: действительность, внутри которой движется и пытается оставаться сегодняшний человек, все больше определяется тем, что называют западноевропейской наукой”

Таким образом, достижение современной науки является одной из определяющих особенностей современной культуры и, возможно, самым динамичным ее компонентом.

Глава 2.

Социальные и психологические особенности науки.
Уже в далекой древности открытие нового в природе вещей переживалось отдельным индивидом как социальная ценность, превосходящая любые другие. Быть может, первый уникальный прецедент связан с научным открытием, которое легенда приписывает одному из древнегреческих мудрецов Фалесу (VII века до н. э.), предсказавшему солнечное затмение. Тирану, пожелавшему вознаградить его за открытие, Фалес ответил: “Для меня было бы достаточной наградой, если бы ты не стал приписывать себе, когда станешь передавать, другим то, чему от меня научился, а сказал бы, что автором этого открытия являюсь скорее я, чем кто-либо другой”.

В этой реакции сказалась превосходящая любые другие ценности и притязания социальная потребность в признании персонального авторства. Психологический смысл открытия (значимость для личности) оборачивался социальным (значимость для других, непременно сопряженная с оценкой общественных заслуг личности в отношении безличностного научного знания).

Свой результат, достигнутый благодаря внутренней мотивации, а не “изготовленный” по заказу других, адресован этим другим, признание которыми успехов индивидуального ума воспринималось как высшая награда. Уже этот эпизод далекой древности иллюстрирует изначальную социальность личностного “параметра” науки как системы деятельности.

.
Общение ученых не исчерпывается обменом информацией. Иллюстрируя важные преимущества обмена идеями по сравнению с обменами товарами, Бернард Шоу писал: “Если у вас яблоко и у меня яблоко, и мы обмениваемся ими, то остаемся при своих — у каждого по яблоку.

Но если у каждого из нас по одной идее и мы передаем их друг другу, то ситуация меняется. Каждый из нас становится богаче, а именно — обладателем двух идей”.
Эта наглядная картина преимуществ интеллектуального общения не учитывает главную ценность общения в науке как творческого процесса, в котором возникает “третье яблоко”, когда при столкновении идей происходит “вспышка гения”. Процесс познания предполагает трансформацию значений. Если общение выступает в качестве непременного фактора познания, то такая информация не может интерпретироваться только как продукт усилий индивидуального ума.

Она порождается пересечением мысли, идущей из многих источников. Реальное движение научного познания выступает в форме порой весьма напряженных диалогов, простирающихся во времени и пространстве. Ведь исследователь задает вопросы не только природе, но также другим ее испытателям, ища в их ответах информацию (приемлемую или неприемлемую), без которой не может возникнуть его собственное решение. Это побуждает подчеркнуть важный момент. Не следует, как это обычно делается, ограничиваться указанием на то, что значение термина (или высказывания) само по себе “немо” и сообщает нечто существенное только в целостном контексте всей теории.

Такой вывод лишь частично верен, ибо неявно предполагает, что теория представляет собой нечто относительно замкнутое. Конечно, любой термин лишен исторической достоверности вне контекста конкретной теории, смена постулатов которой меняет и его значение.

Прослеживая социальный параметр науки как деятельности, мы видим многообразие его “сечений”. Эта деятельность вписана в конкретно-исторический социокультурный контекст. Она подчинена нормам, вырабатываемым сообществом ученых. (В частности, вошедший в это сообщество призван производить новое знание и над ним неизменно тяготеет “запрет на повтор”.) Еще один уровень представляет причастность к школе или направлению, к кругу общения, входя в который индивид становится человеком науки.

Наука, как живая система, — это производство не только идей, но и творящих их людей. Внутри самой системы идет незримая непрерывная работа по построению умов, способных решать ее назревающие проблемы. Школа как единство исследования, общения и обучения творчеству, является одной из основных форм научно — социальных объединений, притом древнейшей формой, характерной для познания на всех уровнях его эволюции. В отличие от организаций типа научно — исследовательского учреждения школа в науке является неформальным, т.

е. не имеющим юридического статуса объединением. Ее организация не планируется заранее и не регулируется регламентом. Поскольку конфронтация и оппонирование происходят в зоне, которую контролирует научное сообщество, вершащее суд над своими членами, ученый вынужден не только учитывать мнение и позицию оппонентов с целью уяснить для самого себя степень надежности своих оказавшихся под огнем критики данных, но и отвечать оппонентам.

Полемика, хотя бы и скрытая, становится катализатором работы мысли. Между тем, подобно тому как за каждым продуктом научного труда стоят незримые процессы, происходящие в творческой лаборатории ученого, к ним обычно относят построение гипотез, деятельность воображения, силу абстракции и т. п., в производстве этого продукта незримо участвуют оппоненты, с которыми он ведет скрытую полемику. Очевидно, что скрытая полемика приобретает наибольший накал в тех случаях, когда выдвигается идея, претендующая на радикальное изменение устоявшегося свода знаний.

И это не удивительно. Сообщество должно обладать своего рода “защитным механизмом”, который препятствовал бы “всеядности”, немедленной ассимиляции любого мнения. Отсюда и то естественное сопротивление общества, которое приходится испытывать каждому, кто притязает на признание за его достижениями новаторского характера. Признавая социальность научного творчества, следует иметь в виду, что наряду с макроскопическим аспектом (который охватывает как социальные нормы и принципы организации мира науки, так и сложный комплекс отношений между этим миром и обществом) имеется микросоциальный.

Он представлен, в частности в оппонентном круге. Но в нем, как и в других микросоциальных феноменах, выражено также и личностное начало творчества. На уровне возникновения нового знания — идет ли речь об открытии, факте, теории или исследовательском направлении, в русле которого работают различные группы и школы, — мы оказываемся лицом к лицу с творческой индивидуальностью ученого. Ее игнорирование столь же неправомерно, как редукция процесса научного познания к внутрипсихическим “вспышкам гения”.

Таким образом, научная информация о вещах сливается с информацией о мнениях других по поводу этих вещей. В широком смысле и добывание сведений о вещах, и добывание сведений о мнениях других по поводу этих вещей может быть названо информационной деятельностью. Она столь же древняя, как сама наука. Для того чтобы успешно выполнить свою главную социальную роль, ученый должен быть информирован о том, было что известно до него. В противном случае, он может оказаться в положении открывателя уже установленных истин.

12Следующая ⇒

Похожая информация:

Поиск на сайте:

В настоящее время в экономике, политике и социальной жизни общества все большую роль играет научно-техническая революция. Она представляет собой сложную динамичную систему, которая включает в себя науку, технику и производство. В этой системе наука служит генератором идей, техника осуществляет их материальное воплощение, которое реализуется через производство.

Развитие науки приводит к глубоким, революционным изменениям в технике и технологии, что, естественно, революционизирует и материальное производство.

Первой и наиболее характерной чертой современной науки является то, что она становится непосредственной производительной силой.

Это значит, что технический прогресс непосредственно опирается на развитие науки. Даже техническое проектирование стало отраслью научного труда (почти всегда при проектировании решаются новые научные проблемы).

Конечно, не вся наука «работает» исключительно на технику. В общем объеме науки значительное место занимают исследования, решающие «собственные» проблемы науки. И все же можно говорить об индустриализации науки не только с точки зрения ее оснащения, но и с точки зрения ее связей с производством.

Вторая характерная черта современной науки – масштабность. На смену ученым-одиночкам, относительно свободным в выборе научной проблематики и сроков исследования, пришла масса людей, опирающаяся на мощную техническую базу, научная работа которых планируется и управляется.

Резкое ускорение темпов научно-технического прогресса – третья характерная черта современной науки.

Оно приводит, во-первых, к развитию науки в направлении ее внутренней дифференциации, вызывающей, в свою очередь, узкую специализацию исследователей, и, во-вторых, к колоссальному увеличению объема накапливаемых знаний, что требует новых масштабов и форм систематизации передачи научной информации.

Наряду с процессом дробления и специализации в современной науке проявляется и противоположный процесс «объединения» не только смежных, но и весьма далеких наук, например: экономики и математики, эксплуатации автомобильного транспорта и математической логики.

Это четвертая характерная черта современной науки, которую можно назвать тесным взаимодействием наук. Особенно ярко это проявляется в глубоком проникновении математических методов в самые разные, не только точные, но и гуманитарные науки.

В последние годы в науке обнаруживается еще одна – пятая характерная черта системный подход к изучению объектов исследования. Это означает, что исследователь выявляет не только строение и свойства исследуемого объекта, но и старается понять способ связи его частей и подсистем, понять функции, выполняемые каждым элементом.

При системном подходе исследуемый объект рассматривается как сложное целое, обладающее свойствами сохранять устойчивость и качественную определенность в различных условиях его существования.

Эти характерные черты науки определяют ее приоритетные направления . Для России на современном этапе они таковы:

1 Энергетика– энергообеспечение, нетрадиционные и возобновляемые источники энергии, энергосбережение и эффективное использование энергии; создание энерго- и ресурсоэкономичных архитектурно-конструктивных систем нового поколения.

2 Машины и механизмы– механика машин, обеспечение надежности и безопасности технических систем, повышение конкурентоспособности продукции машиностроения.

3 Новые материалы и вещества, модифицированные биологические формы – физические, химические, биологические и генетические методы и технологии получения новых веществ, материалов, модифицированных биологических форм, наноматериалы и нанотехнологии.

4 Технологии профилактики, диагностики, лечения и реабилитации.

Медицинская техника, изделия медицинского назначения, лекарственные препараты – разработка новых лечебных, диагностических, профилактических и реабилитационных технологий, приборов и изделий медицинского назначения, лекарственных и иммунобиологических препаратов, клеточных и молекулярно-биологических технологий.

5 Продовольственная безопасность и эффективность агропромышленного комплекса– повышение эффективности агропромышленного комплекса и уровня продовольственной безопасности, разработка интенсивных и ресурсоэкономных технологий ведения сельского хозяйства.

6 Математика, физика, информационные технологии – математическое и физическое моделирование систем, структур и процессов в природе и обществе, информационные технологии, создание современной информационной инфраструктуры.

7 Новые приборы, электроника, лазерно-оптическая техника – конкурентоспособные изделия радио-, микро-, нано-, СВЧ- и силовой электроники, микросенсорики, лазерно-оптической техники, разработка новых видов приборов, в том числе для научных целей.

8 Природопользование и экология – полезные ископаемые и недра России, методы эффективного использования и возобновления природных ресурсов, проблемы экологии, методы предупреждения и ликвидации последствий чрезвычайных ситуаций.

9 Социально-ориентированная инновационная экономика – теоретико-методологические основы становления в Республике Беларусь инновационной социально-ориентированной экономики, обеспечивающей ее устойчивое развитие во взаимодействии с мировой экономической системой.

10 Человек, общество, культура, образование – философско-мировоззренческие предпосылки и логико-методологические основания общественного прогресса и социальной устойчивости, развития личности, культуры и образования, формирования идеологии белорусского общества.

11 Обороноспособность и национальная безопасность – научное обеспечение укрепления обороноспособности и повышения уровня национальной безопасности России.

⇐ Предыдущая123

Читайте также:

ХАРАКТЕРНЫЕ ЧЕРТЫ СОВРЕМЕННОЙ НАУКИ

Современная наука представляет собой обширную ассоциацию естественно-научных, гуманитарных, технических отраслей, определенное единство которой обеспечивается стратегией исследований, стилем постановки и изучения проблем, способом производства и функционирования знаний, природой исследовательской деятельности и т.

д. Она характеризуется использованием качественно новых способов научного исследования, слиянием революции в науке и технике в общую научно-техническую революцию, важными чертами которой является автоматизация, кибернетизация, химизация производства, овладение ядерной энергией, стремительное освоение космоса.

Широкое использование электрон но- вычислительной техники, автоматизация обработки информации создают условия для резкого увеличения продуктивности труда ученых. Задачи, которые стоят перед современной наукой, уже не могут быть успешно решены без использования ЭВМ, которая параллельно с экспериментом все более становится самостоятельным источником знаний.

Так, физическая картина явления может быть получена на основе количественной обработки на ЭВМ предложенными теоретическими формулами, как это было сделано при создании математической модели Азовского моря, при прогнозировании изменений в биосфере в результате ядерной войны.

Характерной чертой современной науки становится «лавинный», экспоненционный рост научной информации, обработка и анализ которой традиционными методами уже невозможны.

Это требует как усовершенствования технических средств обработки и передачи информации, так и последующего синтеза конкретных наук, с их обобщением и трансформацией разнообразных научных данных в более упорядоченную стройную систему научных знаний.

На современном этапе наука все более изучает и использует глобальные и космические явления, закономерности, факторы, что характеризует новые взаимоотношения человека и природы. Познание и освоение космоса имеет большое значение для решения целого ряда земных проблем глобального характера (экологической, источников энергии и сырья, охраны Мирового океана и т.

д.), для оценки и прогноза определенных метеорологических, геологических и других явлений. Они также обеспечили бурное развитие космических методов исследования в таких науках, как метеорология, геодезия, ландшафтоведение, геология, землеведение и т.д. И сейчас уже можно говорить о космическом землеведении, то есть изучению Земли из космоса при помощи искусственных спутников и космических станций.

Исследование космоса оказывает большое влияние на развитие научно-технического прогресса, концентрирует наиболее передовые достижения науки и техники различных направлений, являясь мощным стимулятором дальнейшего развития науки, техники, производства, поскольку результаты решения сложных задач при проведении космических исследований используются и в земных условиях.

Именно развитие космической техники определило производство новых материалов, сверхчистых металлов и сплавов увеличенной мощности и легкости, требует автоматизации, микро миниатюризации, увеличения надежности и точности продукции и т.д.

Одна из характеристик особенностей современной науки — высокие темпы её развития, которые становятся важнейшим фактором социального прогресса, роста уровня культуры и экономики общества. В характере научной деятельности, в самой системе отношений между учеными, которые складываются в процессе их деятельности, произошли коренные изменения, обусловленные переходом от индивидуальной исследовательской работы к работе крупных исследовательских учреждений с их подчинением определенной цели, единому плану, с их организационной иерархией, разделением труда, коллективностью творческого поиска.

В эпоху бурного научно-технического прогресса происходит процесс взаимопроникновения и интеграции научных знаний, возникновение междисциплинарных исследовательских отраслей. Это предвидел еще В.И.Вернадский, который в своих «Размышлениях натуралиста» писал: «… рост научных знаний ХХ века быстро стирает грани между отдельными науками.

Мы все больше специализируемся не на науках, а на проблемах. Это дает возможность, с одной стороны, углубляться в исследуемые явления, а с другой – расширять охват его всех точек зрения».

Междисциплинарные исследования требуют создания междисциплинарных научных центров как постоянных (региональных центров), так и временных (конкретных исследовательских программ и проектов, временных научных коллективов и т.д.) или периодичных (например, программы Международного геофизического года).

При этом возникают разноаспектные проблемы, среди которых важнейшей является подготовка высоко квалифицированных специалистов в междисциплинарных отраслях.

Это требует прежде всего культивирования в высшей школе целевой подготовки специалистов по специальным учебно-научным программам, что, в частности, сегодня особенно необходимо для будущих специалистов в областях наук о Земле.

В современных условиях все более выделяется производственная инфраструктура, которая включает отраслевые научные исследования, подготовку и переподготовку кадров, информационное обеспечение и управление производством, создание природоохранных технологий и т.д.

Развитие науки зависит и от объема затраченных на неё средств.

Современные масштабы научных исследований, эффективная реализация полученных результатов, сложность и постоянно растущая стоимость научных исследований требуют больших объёмов финансирования. Особенно возрастает стоимость исследований на ведущих направлениях научно-технического прогресса, что связано с индустриализацией научных поисков. При проведении многих фундаментальных исследований используется дорогостоящая и уникальная аппаратура, необходимы крупные вычислительные центры, оснащенные современным оборудованием, которое обеспечивает автоматизированную обработку информационных потоков.

Сегодня большое количество институтов фундаментального профиля по наличию оборудования, насыщенности контрольно-измерительной аппаратурой, использованию энергетических мощностей и по другим показателям уже приблизились к крупным промышленным объектам.

По мнению известного научного деятеля И.Г.Герасимова, в развитии современной науки произошли такие изменения:

Открыты ранее неизвестные, качественно новые объекты, возникли новые научные проблемы и направления исследований, созданы новые сложные материальные средства познания;

Произошла глубокая дифференциация научно-исследовательской деятельности, её результаты приобрели организованный характер;

Расширено взаимодействие различных наук в разрешении не только специальных заданий, а и проблем развития самой науки;

Разрабатываются долгосрочные программы научных исследований, планируется и организовуется деятельность научных коллективов, а вместе с этим и управление развитием науки.

Как справедливо указывает философ У.А.Раджабов, «наука ХХ века отличается качественным своеобразием в сравнении с наукой предыдущих столетий.

В отличие от классического природоведения, современному природоведению присущи рефлективность и теоретичность, оно отличается наличием развитой методологической инфраструктуры, которая регулирует динамику роста знаний и интегрирует отдельные научные дисциплины в целостную систему».

В книге бельгийских ученых И.Пригожина и И. Стенгерса «Порядок из хаоса.

Новый диалог с природой» мастерски изображена «сцена» современной науки с её умопомрачительной панорамой идей, которые находятся в постоянном движении. Авторы на современном этапе развития науки аргументировано акцентируют переход от «мира количества» к «миру качества», к миру, который возникает, предстает, а не просто дается. Подчеркивается, что природным процессам и явлениям, которые познаются, предпочтительно присуща необратимость (направленность) и случайность, в то время как пропагандируемые ранее их обратимость и строгая детерминация является только исключениями из данного общего правила.

Наука способствовала и способствует прогрессу человеческого общества, на беспримерные результаты направленной в будущее научно-технической революции ссылается сложный механизм современного развития.

Одновременно наука выдвинула новые, иногда беспрецедентные проблемы и альтернативы. И как в недалеком прошлом безмерно возвышали научно-технический прогресс, связывая с ним всесторонний прогресс человечества, так сейчас настолько же безоглядно зачастую многими отрицается социально-этичная и гуманистическая сущность развития науки, скептично воспринимается сократовский постулат «знания и добропорядочность неразрывны».

Современный процесс интенсификации производства связан с необходимостью более полного и рационального использования природного сырья, прежде всего минерально-сырьевых ресурсов.

Это непосредственно соприкасается с актуальными проблемами охраны окружающей среды, обеспечения природосохраняющего воспроизводства. Разрешение таких жизненно важных проблем сейчас выступает одним из приоритетных направлений всей общности современных научных исследований. Как подчеркивал русский академик А.Л.

Яншин, время разговоров, общих размышлений о важности охраны природы прошло, результативность природоохранных действий становится решающим направлением будущей экологической программы. Диалектика такова, что научно-технический прогресс не только создает проблемы гармоничного развития системы «человек – природа», а и помогает эффективно их решать.

Сегодня рациональное использование минеральных ресурсов все более связывается с созданием безотходных производств на всех стадиях добычи и переработки сырья, изготовления, перемещения, хранения и употребления продукции.

Организация безотходного производства обозначает качественно новый этап развития промышленного производства, его технологии и техники. Речь идет о создании предприятий нового типа — комплексных комбинатов, которые объединяют различные отрасли на базе полного использования всех привлеченных сырьевых ресурсов и производственных отходов.

Таким образом, наука сегодня полностью осознает себя как источник экономичного, социального и культурного прогресса общества, понимает свою ответственность за будущее человечества и подчиняет этой ответственности свои решения и поиски.

В условиях современного научно-технического прогресса растет взаимодействие науки как важного компонента социальной инфраструктуры с непроизводственной сферой (образование, культура, охрана здоровья и т.д., Рост уровня внедрения науки в данную сферу общественной практики происходит в результате усиления связи актуальных экономических заданий с социальными целями.

Интенсификация развития общественного производства неминуемо опирается на предметные компоненты продуктивных сил, а так же на постоянный рост культурного уровня населения.

Таким образом, наука выполняет конкретные социальные функции в обществе, существуя и возрождаясь в нем, не утрачивая при этом свою специфичность и своеобразие как социальный институт. Являясь источником разнообразных способов деятельности, наука принимает участие и в определении тех целей, которые ставит перед собой общество, то есть выступает не только производственной, а и действительно социальной силой.

Это с полной очевидностью проявляется, когда научные данные используются для разработки и реализации крупномасштабных планов и программ экономического развития. Все более развиваются научная теория принятия решений, програмно-целевой метод управления, системный анализ и т.

Современное строительство украинской государственности должно быть тесно связано с процессом ускорения научно-технического прогресса. Этот феномен имеет принципиально важное значение для реального развития социально-экономических отношений, не допускает альтернативы и упрощенного толкования. В этой связи очень правильно писал известный писатель Даниил Гранин: «Может показаться, что в эпоху ускорения научно-технического прогресса пути познания должны и могут стать более короткими.

Это ошибка. Никакими приказами и желаниями пути к научным истинам не сократить. Их сходство с лабиринтами не исчезает. По природе вещей. Но преодолевать эти тяжелые пути пройдется быстрее! Это исторически необходимо. И поэтому — возможно. При этом, бесспорно, повсеместно растет напряженность благой и притягивающей драмы научно-технических поисков.

И это обозначается на психологии всех исследователей не совсем обычными или, лучше сказать, ранее завуалированными чертами. Именно поиски путей ускорения — это пути в неизвестное».

1 В области физики был выполнен синтез шести самых тяжелых элементов таблицы Менделеева. В этом участвовали ученые из лаборатории им. Флерова. Она находится в Объединенном институте ядерных исследований в г. Дубна под Москвой. Эти новые вещества получили официальное признание со стороны Международного союза чистой и прикладной химии.

2 Создание технологий для получения светового излучения высочайшей мощности. Эта мощность основана на параметрическом усилении света, которое происходит в нелинейно-оптических кристаллах. Данную установку построили в Институте прикладной физики РАН в Нижнем Новгороде.

Она выдает мощный импульс, которые больше по своей мощности всех электростанций планеты.

Создание мощных лазерных систем позволяет проводить исследование экстремальных физических процессов. Также стало возможным получать лазерные источники нейтронов с уникальными свойствами.

3 Мощные магнитные поля удалось получить физикам российского ядерного центра в городе Саров. Полученное в результате научного эксперимента магнитное поле в миллионы раз превышает силу земного магнитного поля. Эти магнитные поля позволяют проводить исследование поведения сверхпроводников и других веществ в экстремальных условиях.

4 Ученые из университета им. Губкина нашли доказательства небиологического происхождения нефти и газа. Эти полезные ископаемые могут также возникать в результате сложных процессов, происходящих в верхней мантии Земли.

таким образом, нефть и газ не закончатся никогда, как это было принято считать раньше.

5 Не менее крупным географическим открытием на Земле стало обнаружение российскими учеными в Антарктиде озера подо льдом, которое получило название «Восток». Открытие было сделано благодаря радарным наблюдениям и сейсмическому зондированию. В результате бурения скважины на станции Восток ученые получили данные о том, каким был климате на Земле в далеком прошлом. Также стало возможным сделать вывод об изменении температуры и концентрации СО2. Это озеро находилось в изоляции от всего мира примерно 1 млн. лет. Ученые предполагают, что данное открытие поможет понять, на какой планете во Вселенной возможно существование жизни.

Озеро «Восток»

6 Останки карликовых мамонтов были обнаружены российскими учеными на . Ранее считалось, что мамонты вымерли еще в историческое время. Благодаря использованию метода радиоуглеродной датировки выяснилось, что последние мамонты жили на этом острове около 2000 года до нашей эры.

7 Сибирские археологи обнаружили третий вид человеческих существ, которые получили название «денисовцы» . Ранее науке были известны только два вида древних людей: неандертальцы и кроманьонцы. Кости новых людей были найдены в Денисовой пещере, которая была обнаружена на Алтае. Этот народ жил в Евразии 40 тысяч лет назад.

  • Читайте также:

8 Информация о воде на Марсе. По данным наземных наблюдений и наблюдений, полученных с научных приборов на американских и европейских зондах, подтвердились предположения о наличии водяного льда на Марсе. Они были обнаружены российским прибором ХЕНД. Он был создан в Институте космических исследований РАН. Лед удалось найти в средних широтах и у самих полюсов Марса. Также на этой планете наши ученые обнаружили линии поглощения метана. Для исследований использовался инфракрасный спектрометр на гавайском телескопе CFHT. Метан на земле выделяется в результате жизнедеятельности живых существ. Измерения с европейского зонда «Марс-Экспресс» подтвердили эти сенсационные данные.

Фоторепортаж: Российский прибор ХЕНД на борту американского космического аппарата «2001 Mars Odyssey»

9 Новые гипотезы о миграции людей на Земле. Российские антропологи по результатам изучения фольклора и мифов народов Сибири и Америки доказали возможность определения направлений перемещений первобытных племен. Эти данные подтверждаются археологическими раскопками и наукой генетикой.

10 За доказательство одной из семи задач тысячелетия («Гипотеза Пуанкаре́» ) математику из России Г. Перельману в 2002 году была назначена премия в 2 млн. рублей. Но он отказался от нее, чем привлек внимание всех СМИ мира. Свое решение математик объяснил тем, что его успехи не больше других известных ученых мира, которые также очень близко подходили к данному результату. Также математик отказался и от премии в 1 млн $ от Американского математического института Клэя и Института Анри Пуанкаре в Париже.


Григорий Перельман

11 Изучение Челябинского метеорита размером в 20 метров также стало важным событием в российской науке. Благодаря проведенным в Институте геохимии и аналитической химии имени Вернадского РАН анализам его определили в класс обыкновенных хондритов.

Возраст астероида, по мнению специалистов, составил 4,56 млрд. лет, то есть столько же, сколько сейчас лет всей Солнечной системе.

Во время движения земле астероид пролетал на небольшом расстоянии от солнца. Этот вывод ученые сделали на основании наличия следов процессов плавления и кристаллизации, которые были обнаружены на фрагментах метеорита.

  • Читайте также:

Еще достижения

Российская академия наук за последние 20 лет продемонстрировала много достижений в разных научных областях. Например, был разработан новый метод исследования квантовых интегрируемых моделей. Также были построены модели на основе гидротермодинамики для анализа глобальных изменений окружающей среды. Большое значение для мировой науки имеет создание многопроцессорной вычислительной системы МВС-1000/М.

Она отличается производительностью 1 триллион операций в секунду и является самым мощным суперкомпьютером в России.

Институт ядерных исследований РАН предоставил результаты многолетних измерений потока нейтрино от Солнца. Для этого использовался галлий-германиевый нейтринный телескоп Баксанской обсерватории. Благодаря этим результатам появилась возможность пересмотреть представления о роли нейтрино в эволюции Вселенной и строении элементарных частиц. Успешный запуск космического аппарата КОРОНАС-Ф позволит лучше изучать процессы на Солнце и их влияние на нашу планету.


КОРОНАС Ф

В Физико-техническом институте им. А.Ф. Иоффе была разработана новая конструкция лазеров и лазерные диоды, которые даже при комнатной температуре могут работать в непрерывном режиме. Использование технологии гетероструктур с предельным размерным квантованием сделало Россию лидером в данной области. Нобелевскую премию по физике получил академик Ж. И. Алферов за исследования полупроводниковых гетероструктур.


Жорес Иванович Алферов

В институтах Теоретической и прикладной механики и Гидродинамики СО РАН была разработана концепция аэродинамических труб нового поколения. Это позволило создавать сложные газодинамические процессы при гиперзвуковом диапазоне скоростей. Институт органической химии создал оксиднометаллическую систему с высоким содержанием решеточного кислорода. При реакции с метаном стало возможным получать газ с селективностью 95%.

Кризис науки

В то же время многие ученые считают, что российская наука находится в состоянии кризиса. Например, вице-президент РАН С. Алдошин на Уральском научном форуме, который прошел в Екатеринбурге, высказал мнение об уничтожении отраслевой науки в стране. В советское время она связывала научное сообщество и промышленные предприятия. В 90-е годы ее просто не стало, по мнению Алдошина. Финансирование отрасли значительно ухудшилось. Вложение средств коммерческих предприятий в науку стало невыгодным, так как конкретные научные решения от ученых перестали поступать. Таким образом, отраслевая наука осталась на государственном обеспечении, которое не отличается большими размерами финансовых вливаний. Это отражается на количестве публикаций и открытий российских ученых. Многие ученые и аналитики считают, что исчезновение наукоемкой промышленности привело к настоящему краху русской науки. Именно она была главным заказчиком научных разработок.

Главной причиной упадка стало слабое финансирование науки, которое до сих пор в несколько раз меньше по сравнению с США и Китаем. В 90-е годы сократилось количество научных и проектных организаций, конструкторских бюро. В эти годы резко увеличилась эмиграция из страны научных сотрудников и выпускников вузов, что нанесло огромный урон бюджету страны. В эти годы были утеряны многие наработанные научные технологии, которые так и не были внедрены в производство.

Россия потеряла свои научные позиции почти во всех отраслях. Пострадала не только фундаментальная наука, но и ее практические отрасли. Среди них можно особенно отметить упадок в ядерной энергетике. По сравнению с мировыми научными исследованиями на долю России приходится только 2,6%.

По «индексу технологий» Россия находится на последнем месте в мире. Страна ушла назад по уровню развития высоких технологий примерно на 15 лет. В биотехнологии и по другим направлениям на порядок не менее 20 лет. Чтобы исправить данную ситуацию в науке, необходимо привлечь около 500 тысяч специалистов. В то же время научная эмиграция не прекращается и из страны каждый год уезжают молодые ученые в количестве около 15 тысяч. Причем, скорее всего, они никогда не вернутся назад, так как многие аналитики не уверены в скором изменении обстановки для нормальной работы и жизни российских ученых.

Также пока не прослеживается комплексных государственных мер по стимулированию инноваций в науке. Сближения отечественного частного сектора с наукой, который является главным потенциальным потребителем инноваций, также не происходит. Со стороны государства нет попыток поощрения частного бизнеса по заказу и внедрению инноваций, а также по продвижению инновационных изделий на рынки. Чтобы исправить ситуацию, необходимо всему обществу осознать ответственность за свою страну и ее будущее.